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Abstract. Active inference relies on state-space models to describe the
environments that agents sample with their actions. These actions lead
to state changes intended to minimize future surprise. We show that
surprise minimization relying on Bayesian inference can be achieved by
filtering of the sufficient statistic time series of exponential family input
distributions, and we propose the hierarchical Gaussian filter (HGF) as
an appropriate, efficient, and scalable tool for active inference agents to
achieve this.
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1 Introduction

Active inference [3] is a framework for modelling and programming the behaviour
of agents negotiating their continued existence in a given environment. Under
active inference, an agent chooses its actions such that they minimize the free
energy of its model of the environment. In order to do this, the agent needs to
perform inference on the state of the environment and its own internal control
states which generate actions.

The agent performing active inference and the researcher modelling such an
agent have a converging interest in a simple, modular, and automated algorithm
that allows them to perform free energy minimization with complex hierarchi-
cal models. Accordingly, there have recently been advances in developing an
automated algorithmic framework for free energy minimization in active infer-
ence [1,7].

In this paper, we are concerned with the filtering of environmental input
which reaches the agent through its Markov blanket. We show that exponential-
family input distributions can be inferred by tracking the mean of the suffi-
cient statistics of the inputs by passing simple update messages which amount
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to precision-weighted prediction errors. For stationary input distributions, this
implements exact Bayesian inference. In the more common case of non-stationary
input distributions, we propose to apply hierarchical Gaussian filtering [4,5] to
the sufficient statistic time series, resulting in approximate Bayesian inference
with a dynamic learning rate.

2 Bayesian Inference Reduced to Mean-Tracking

2.1 Mean Tracking and Exponential Weighting

As a preliminary, we note that the arithmetic mean x̄n := 1
n

∑n
i=1 xi of a time

series {x1, x2, . . . , xn} can be updated sequentially from x̄n to x̄n+1 when a new
observation xn+1 occurs.

x̄n+1 = x̄n +
1

n + 1
(xn+1 − x̄n) (1)

If we take the previous mean x̄n to be a prediction for the new observation
xn+1, then the difference xn+1 − x̄n is a prediction error. The update to x̄n then
amounts to adding the prediction error weighted by 1/(n + 1). As n grows, the
weight of prediction errors approaches zero, which ensures the equal weighting
of all observations in the mean.

As a further preliminary, we note that if we replace the weight 1/(n + 1) of
the prediction error with a constant learning rate α ∈ [0, 1], we no longer get
the mean x̄n of the time series but the exponentially weighted average qn.

qn+1 = qn + α (xn+1 − qn) (2)

With q0 := 0 and γ := 1 − α, this can be written in closed form,

qn = (1 − γ)
n−1∑

i=0

γixn−i, (3)

which makes apparent the exponential downweighting of observations xi as they
lie further in the past.

2.2 A Conjugate Prior Which Reduces Bayesian Inference to Mean
Tracking for Exponential Families

Exponential families of probability distributions are those which can be written
in the form

p (x|ϑ) = fx(ϑ) := h(x) exp (η(ϑ) · t(x) − b(ϑ)) , (4)

where x is a (possibly) vector-valued observation, ϑ is a parameter vector, h(x)
is a normalization constant, η(ϑ) is the so-called ‘natural’ parameter vector,
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t(x) is the sufficient statistic vector, and b(ϑ) is a scalar function. If we choose
as our prior

p (ϑ|ξ, ν) = gξ,ν(ϑ) := z (ξ, ν) exp (ν (η (ϑ) · ξ − b(ϑ))) , (5)

where ξ is a hyperparameter vector, ν > 0 a scalar hyperparameter, and z(ξ, ν)
the normalization constant

z(ξ, ν) :=
(∫

exp (ν (η (ϑ) · ξ − b(ϑ))) dϑ

)−1

, (6)

then the posterior has the same form as the prior (i.e., it is conjugate) with
updated hyperparameters

ν ← ν + 1 (7)

ξ ← ξ +
1

ν + 1
(t(x) − ξ) . (8)

A proof of this is in the Appendix.
In other words, with the prior introduced in Eq. 5, Bayesian inference with

exponential family models reduces to tracking the mean of the sufficient statis-
tic t(xi) of the observations {x1,x2, . . .}. For a single observation x, inference
amounts to updating the hyperparameter ξ with the sufficient statistic t(x)
under the assumption that there have been ν previous observations with suffi-
cient statistic ξ.

3 Predictive Distributions

Agents performing active inference minimize the free energy of their model of
the environment by minimizing prediction errors regarding their observations
(in the long run; in the short run, it is necessary to risk surprises that won’t
kill us in order to gain the information needed to avoid being dead in the long
run). Therefore, the decisive goal and outcome of model-based inference is the
predictive distribution f̂ of inputs x. In the present framework, this is

f̂ξ,ν(x) :=
∫

fx(ϑ)gξ,ν(ϑ)dϑ. (9)

For the univariate Gaussian with unknown mean and precision, we will call this
the Gaussian-predictive distribution NP:

f̂ξ,ν(x) = NP (x; ξ, ν)

:=

√
1

π(ν + 1) (ξx2 − ξ2x)
Γ

(
ν+2
2

)

Γ
(

ν+1
2

)

(

1 +
(x − ξx)2

(ν + 1) (ξx2 − ξ2x)

)− ν+2
2

(10)
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For ξx = 0 and ξx2 = 1, this becomes a Student’s-t distribution with ν+1 degrees
of freedom. Figure 1 shows how the Gaussian-predictive distribution NP works
in practice, i.e., how it adapts as ν, ξx, and ξx2 are updated sequentially according
to Eqs. 7 and 8.

Fig. 1. Sequential updates to the Gaussian-predictive distribution NP in response to
1024 samples drawn from a Gaussian with mean 5 and standard deviation 1/4 (red).
Initial hyperparameters were ξx = 0, ξx2 = 1/8, and ν = 1, corresponding to the initial
NP in black. Updated predictive distributions after 2, 4, 8, . . . , 1024 samples are shown
in grey. (Color figure online)

4 Filtering of Sufficient Statistics for Non-stationary
Input Distributions

Active inference agents find themselves in environments where the distributions
underlying their observations are non-stationary. In such a setting, older obser-
vations have less value for inference about the present than newer ones. Using the
hyperparameter update scheme introduced above is then inappropriate because
it leads to predictive distributions which rely on outdated information and are
overconfident because they overestimate the amount of good information they
have. However, since our update scheme relies on tracking the mean of the suf-
ficient statistics of the observations, that is, simply on filtering the sufficient
statistic time series, we can apply any known filtering method to this time series
and use its output to construct predictive distributions. For example, instead
of applying Eq. 1, we could use Eq. 2, which amounts to an exponential down-
weighting of observations into the past. Using a constant learning rate in this
way corresponds to holding ν constant in Eq. 8. As is evident from Eq. 10, this
means that the predictive distribution retains its fat tails, meaning that an agent
will experience much less surprise at observations far from the predictive mean.
However, keeping ν constant raises the question what value to choose for it, and
when to change it.

A solution to this is the application of a hierarchical Gaussian filter
(HGF) [4,5] to the sufficient statistic time series. The HGF, which contains the
Kalman filter as a special case, allows for filtering with an adaptive learning rate
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which is adjusted according to a continually updated prediction about the volatil-
ity of the environment. Updates in the HGF are precision-weighted prediction
errors derived from a hierarchical volatility model by variational approximation.
For example, in the case of a Gaussian input distribution as in Fig. 1, input x
would be filtered by an HGF, allowing for a posterior predictive distribution that
dynamically adapts to a volatile input distribution. Figure 2 shows an example
of how this procedure yields an adaptive ν, which falls in response to changes
in the input distribution and so ensures that the predictive distribution remains
fat-tailed at all times.
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Fig. 2. Example of a time series (input x, top panel, fine blue line) filtered with an
HGF (posterior mean ξx, top panel, red line), which infers the ground truth μ (top
panel, yellow line) well in a volatile environment. Comparison of the HGF updates with
Eq. 8 yields implied ν (bottom panel). This never rises above 12, ensuring a fat-tailed
predictive distribution. In stable phases, implied ν rises; in volatile phases, it falls.
(Color figure online)

5 Discussion

We have shown a way to do exact Bayesian inference with exponential-family
models simply by tracking the mean of the sufficient statistic function as obser-
vations occur. For this to work, the prior introduced in Eq. 5 is crucial, but its



Hierarchical Gaussian Filtering for Active Inference 57

significance has not been recognized before. The approach introduced here is
novel. While our prior appears in [2] and seems to have been forgotten since,
the resulting updates are there written in a form that obscures their meaning
as (precision-)weighted prediction errors and makes it obvious that the relation
to mean-tracking was not seen. However, once this is apparent, it supports a fil-
tering perspective on hyperparameter updates, which opens up new possibilities
such as the HGF filtering proposed in Sect. 4. Additionally, our prior has the
benefit of a ready interpretation: ν virtual previous observations with sufficient
statistic ξ.

For active inference agents, it is critical to predict observations in a way
that allows for non-stationary generative processes in the environment. In the
framework we propose, this can be achieved by filtering the sufficient statistics
of the input distribution using an HGF. This allows predictive distributions to
keep a shape (precise but fat-tailed and able to adapt quickly in response to
prediction errors) that optimally serves the purpose of minimizing surprise in
the long run.

This perspective can be expanded to include networks of HGF nodes where
the input distribution and its associated filter are the window into the deeper
layers of the network. These deeper layers encode the agent’s model of its envi-
ronment, and it is the free energy of this model that the agent endeavours to
minimize by active inference. The present work is therefore a natural comple-
ment to recent work on an automated algorithmic framework for free energy
minimization in active inference [1,6,7]. The simple message-passing nature of
the hyperparameter updates we are proposing fits naturally into message passing
schemes in deep networks.

Appendix: Proof of Eqs. 7 and 8

By Bayes’ theorem we have

p (ϑ|x, ξ, ν) ∝ p (x|ϑ) p (ϑ|ξ, ν)
= fx(ϑ)gξ,ν(ϑ)
= h(x) exp (η(ϑ) · t(x) − b(ϑ))

z (ξ, ν) exp (ν (η (ϑ) · ξ − b(ϑ)))
∝ exp (η(ϑ) · (t(x) + νξ) − (ν + 1)b(ϑ))

We only need to prove that the argument of the exponential function has the
required form. Normalization takes care of the rest. Rearranging the argument
gives us

η(ϑ) · (t(x) + νξ) − (ν + 1)b(ϑ)

= (ν + 1)
(

η(ϑ) · 1
ν + 1

(t(x) + νξ) − b(ϑ)
)

= (ν + 1)
(

η(ϑ) ·
(

ξ +
1

ν + 1
(t(x) − ξ)

)

− b(ϑ)
)

.
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From this, it follows that

p (ϑ|x, ξ, ν) = gξ′,ν′(ϑ)

with

ν′ = ν + 1

ξ′ = ξ +
1

ν + 1
(t(x) − ξ)
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