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Abstract Decision making requires integrating knowledge gathered from personal experiences

with advice from others. The neural underpinnings of the process of arbitrating between

information sources has not been fully elucidated. In this study, we formalized arbitration as the

relative precision of predictions, afforded by each learning system, using hierarchical Bayesian

modeling. In a probabilistic learning task, participants predicted the outcome of a lottery using

recommendations from a more informed advisor and/or self-sampled outcomes. Decision

confidence, as measured by the number of points participants wagered on their predictions, varied

with our definition of arbitration as a ratio of precisions. Functional neuroimaging demonstrated

that arbitration signals were independent of decision confidence and involved modality-specific

brain regions. Arbitrating in favor of self-gathered information activated the dorsolateral prefrontal

cortex and the midbrain, whereas arbitrating in favor of social information engaged the

ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision

captures arbitration between social and individual learning systems at both behavioral and neural

levels.

Introduction
As social primates navigating an uncertain world, humans use multiple information sources to guide

their decisions (Charness et al., 2013). For example, in investment decisions, investors may either

choose to follow a financial expert’s advice about a particular stock or base their decision on their

own previous experience with that stock. When information from personal experience and social

advice conflict, one source must be favored over the other to guide decision making. We conceptu-

alize the process of selecting between information sources as arbitration. Arbitration is particularly

important in uncertain situations when different sources of information have different

levels of reliability. While stock performance may fluctuate, the advisor could pursue selfish

interests. In our example, investors may track stock performance as it fluctuates and also scrutinize a

financial expert’s recommendation. Such advice may change based on the advisor’s current knowl-

edge and underlying personal incentives. Thus, it is challenging to infer the intentions of the advisor

because they are concealed or expressed indirectly, requiring inference from observations of
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ambiguous behavior. Optimal arbitration should therefore consider the relative uncertainty associ-

ated with each source of information.

Arbitrating between different types of reward predictions based on experiential learning acquired

by an individual has been associated with the prefrontal cortex. Specifically, the dorsolateral prefron-

tal cortex (DLPFC) and the frontopolar cortex have been shown to arbitrate between habitual

(model-free) and planned (model-based) learning systems (Lee et al., 2014). By contrast, compara-

tively little is known about how humans weigh self-gathered (individual) reward information against

observed (social) information. To investigate this question, we considered two hypotheses: First,

arbitration involving social information could rely on theory of mind (ToM) processes, that is infer-

ence about others’ mental states (Frith and Frith, 2005; Schaafsma et al., 2015) and higher-level

social representations (Frith, 2012; Devaine et al., 2014a). Accordingly, arbitration involving the

intentions of others may rely on activity in classical ToM regions, such as the temporoparietal junc-

tion (TPJ) and dorsomedial prefrontal cortex (Carrington and Bailey, 2009; Frith and Frith, 2010;

Baker, 2011; Schurz et al., 2014). Alternatively, arbitrating between individual and social informa-

tion may involve similar neural networks as those selecting between model-free and model-based

learning (Lee et al., 2014), and thus engage lateral prefrontal and frontopolar regions.

It is also worth noting that arbitration depends on both experienced and inferred value learning.

Similarly to directly experienced reward learning, inferring on others’ intentions engages the stria-

tum, potentially signaling the value associated with social feedback during probabilistic reward

learning tasks. For example, parts of the striatum including the caudate show stronger activations in

response to reciprocated compared to unreciprocated cooperation during iterative trust games

(Delgado et al., 2005; King-Casas et al., 2008; Fareri et al., 2015), and represent social prediction

errors signaling a change in fidelity (Delgado et al., 2005; Biele et al., 2009; Klucharev et al.,

2009; Campbell-Meiklejohn et al., 2010; Braams et al., 2014; Diaconescu et al., 2017).

In addition, with respect to tracking higher level, contextual change about both reward contin-

gencies and intentionality, one may expect the involvement of the anterior cingulate cortex (ACC).

In addition to being associated with volatility tracking in a probabilistic reward learning task

(Behrens et al., 2007), the ACC was shown to represent volatility precision-weighted

prediction errors (PEs) during social learning (Diaconescu et al., 2017).

An additional intriguing question is which neuromodulatory system supports the arbitration pro-

cess. Since arbitration is dependent on the uncertainty of predictions afforded by each learning sys-

tem, several neuromodulatory systems are good candidates. For non-social forms of learning,

previous studies have implicated dopaminergic, cholinergic, and noradrenergic systems in signaling

uncertainty, defined as the inverse of precision (Yu and Dayan, 2005; Iglesias et al., 2013; Payzan-

LeNestour et al., 2013; Schwartenbeck et al., 2015; Marshall et al., 2016). Here, we examined

how arbitration uniquely modulates activity across dopaminergic, cholinergic, and noradrenergic

neuromodulatory systems.

To investigate arbitration between individual and social learning systems, we simulated the afore-

mentioned stock investment scenario in the laboratory. Specifically, we examined how people arbi-

trate between individual reward information and social advice about a probabilistic lottery where

contingencies changed over time. Participants learned to predict the outcome of a binary card draw

using advice from a more informed advisor and information inferred from individually observed card

outcomes (Figure 1).

We separately manipulated the degree of uncertainty (or its inverse, precision) associated with

each information source by independently varying the rate of change with which each information

source predicted the drawn card color (i.e. volatility; Behrens et al., 2007). The advisor was moti-

vated to give correct or incorrect advice depending on the phase of the task, resulting variable reli-

ability of social information. Performing well in the task therefore required participants to track the

probabilities of the two sources of information and decide which of the two to trust. We assumed

that participants weighed the predictions afforded by each information source as a function of their

precision. Thus, we expected participants to rely more on the advice when the advisor’s intentions

were perceived as stable, and on their personal experience when the intentions of the advisor were

perceived to be volatile.
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Results
To examine the neural mechanisms underlying arbitration, we recruited 48 volunteers (mean age

23.6 ± 1.4, 32 females) to perform a binary lottery task requiring arbitration between individual expe-

rienced card outcomes and expert advice. We combined fMRI with a computational modeling

approach using the hierarchical Gaussian filter (HGF) (Mathys et al., 2011; Mathys et al., 2014).

This hierarchical Bayesian model is ideally suited to address our question as it examines multilevel

inference and provides trial-wise estimates of estimated precision of predictions about each informa-

tion source. This framework operationalizes arbitration as a precision ratio, corresponding to the rel-

ative perceived precision of each information source (Figure 2). Thus, arbitration changes as a

function of the relative stability of the advice or the card color probabilities. In our paradigm, arbitra-

tion increased when the precision of the predictions about one of the two sources of information

was high and decreased when both sources were either stable or volatile (see Figure 4 for the arbi-

tration signal averaged across participants).

Behavior: accuracy of lottery outcome prediction and wager amount
Using the factorial structure of the task, we tested the impact of volatility on performance with a

two-factor repeated measures ANOVA, where the two factors were information source (card versus

advice) and phase (stable versus volatile). Across all behavioral metrics, we observed an effect of

Figure 1. Experimental paradigm. (a) Binary lottery game requiring arbitration between individual experience and social information. Volunteers

predicted the outcome of a binary lottery, that is whether a blue or green card would be drawn. They could base predictions on two sources of

information: advice from a gender-matched advisor (video, presented for 2 s) who was better informed about the color of the drawn card, and on an

estimate about the statistical likelihood of the cards being one or the other color that the participant had to infer from own experience (outcome, 1 s).

After predicting the color of the rewarded lottery card (user-controlled, maximum 3 s), participants also wagered one to ten points (user-controlled,

maximum 6 s), which they would win or lose depending on whether the prediction was right or wrong. After the outcome, participants viewed their

cumulative score on the feedback screen (1 s). (b) Contingencies of individual reward and social advice information: Card color probability corresponds

to the likelihood of a given color (e.g. blue) being rewarded. The probabilities were matched on average for the two information sources (55% for the

card color information and 56% for the advice information). Additionally, the two sources of information were uncorrelated as illustrated by phases of

low (yellow) and high (light grey) volatility, enabling a factorial analysis of information source and volatility.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavior influenced by volatility.

Figure supplement 2. |Average pairwise correlations between regressors.
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phase, indicating a reduction in performance in volatile compared to stable phases, and a phase �

information interaction, indicating that the effect was larger for the social than the individual source

of information. First, for the accuracy with which participants predicted lottery outcome, we found a

main effect of phase (df = (1,36), F = 187.94, p = 7.7e-16) and an information source-by-phase inter-

action (df = (1,36), F = 11.13, p = 0.0020) (see Figure 1—figure supplement 1a). Thus, in-keeping

with the rationale that arbitration relates to relative information quality, the degree to which partici-

pants relied on each information source was a function of precision as manipulated using the volatil-

ity structure of the task. Participants performed significantly better in stable compared to volatile

periods of the task. These effects were not modulated by fatigue, as we found no significant differ-

ences between early and late phases of the task.

Second, advice-taking behavior differed as a function of volatility and information source: For the

percentage of trials in which participants followed a given source of information, we detected a

main effect of phase (df = (1,36), F = 56.26, p=7.3073e-09) and an information source-by-phase

Figure 2. Computational learning and arbitration model. In this graphical notation, circles represent constants whereas hexagons and diamonds

represent quantities that change in time (i.e. that carry a time/trial index). Hexagons in contrast to diamonds additionally depend on the previous state

in time in a Markovian fashion. The two-branch HGF describes the generative model for advice and card probability: x1 represents the accuracy of the

current advice/card color probability, x2 the tendency of the advisor to offer helpful advice tendency of card color to be rewarded, and x3 the current

volatility of the advisor’s intentions/card color probabilities. Learning parameters describe how the states evolve in time. Parameter k determines how

strongly x2 and x3 are coupled, and # represents the meta-volatility of x3. The response model maps the predicted color probabilities to choices. The

response model also assumes that trial-wise wagers and predictions arise from a linear combination of arbitration, informational uncertainty (advice and

card), and volatility (advice and card). For model selection, we combined three perception with three response models (see Figure 3). All the models

considered can be grouped according to common features and divided into model families: (i) the Perceptual model families distinguish between more

(non-normative and normative three-level) and less (two-level) complex types of HGFs. More specifically, the distinction between three-level and two-

level HGFs refers to estimating or fixing the volatility of the third level; normative in contrast to non-normative HGFs assume optimal Bayesian

inference. (ii) Response model families distinguish between arbitrated and single-information source – advice or card only – models, which correspond

to estimating parameter # or fixing it to reduce arbitration to either the advice prediction or the card color prediction.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Parameter recovery when using empirical parameter values (Binary HGF).
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interaction (df = (1,36), F = 25.86, p=1.1561e-05) (Figure 1—figure supplement 1b). Thus, partici-

pants took advice less often particularly when it was volatile rather than stable.

Third, the amount of points wagered also depended on the task volatility and the information

source. We observed a main effect of phase (df = (1,36), F = 28.78, p = 4.54e-06) and an information

source-by-phase interaction (df = (1,36), F = 16.75, p = 2.21e-04; Figure 1—figure supplement 1c).

Participants wagered fewer points particularly when advice was volatile. Moreover, the number of

points wagered correlated significantly with the total score in stable phases (r = 0.37, p = 0.02), but

not in volatile phases (r = 0.30, p = 0.06). Simulations using a two-level HGF (with low and fixed vol-

atility) suggested that tracking volatility is beneficial for task performance: a hypothetical person

who did not take the volatility of the task phases into account gained on average 21.6 points less

than an agent tracking volatility. In line with previous evidence (Behrens et al., 2008), these results

emphasize the impact of volatility on the willingness to invest and investment success as measured

here by total score.

Advisor ratings
Participants were asked to rate the advisor (i.e. helpful, misleading, or neutral with regard to sug-

gesting the correct outcome) in a multiple-choice question presented five times during the experi-

ment. The time points were associated with different social and individual information (initial/prior:

1st trial; stable advice, stable card phase = (14th trial); stable advice, volatile card phase (49th trial);

volatile advice, volatile card phase (73rd trial); volatile advice, stable card phase = 115th trial). On

average, participants rated the advice as 75.0 ± 4.6% (mean ± standard deviation) helpful in the sta-

ble advice phase. The corresponding values were 50 ± 3.4% in the volatile advice phase, 63.8 ± 4.4%

in the stable card phase, and 61.2 ± 3.8% in the volatile card phase.

We examined the extent to which participants’ ratings changed as a function of the task phases,

and found a significant main effect of phase (df = (1,36), F = 15.67, p = 3.3e-04) and a significant

information source � phase interaction (df = (1,36), F = 8.42, p = 0.0062). This suggests that advice

ratings decreased during volatile compared to stable phases, and this effect was more strongly

related to the advice compared to the card information.

Debriefing questionnaire
After completing the task, participants filled out a task-specific debriefing questionnaire, assessing

their perception of the advisor and how they integrated the social information during the task. The

questions were originally presented to participants in their native German, and are translated here

into English.

First, participants were asked to describe the strategy the advisor used in the game (debriefing

question 3: ‘Did the advisor intentionally use a strategy during the task? If yes, describe what strat-

egy that was’). Thirty out of 38 participants answered ‘Yes’ to this question, and described (in their

own words) the advisor’s strategy. We repeated our analyses including only these 30 participants

and found that all conclusions remained statistically the same. Second, participants were asked to

rate the advice on a 6-point Likert scale ranging from unhelpful to very helpful (debriefing question

4: ‘How helpful did you perceive the advice you received?”). In general, participants rated the advi-

sors’ recommendations as helpful (mean ratings 4.2 ± 1.0, ranging from 2 to 6). Finally, we also

asked participants to rate, in terms of percentages, how often they followed the advice (debriefing

question 5: ‘How often did you follow the recommendations of the advisor?”). On average, partici-

pants reported that they followed the advice 60% of the time (mean ratings 60 ± 12), which signifi-

cantly differed from chance (t(37) = 5.02, p=1.29e-05). Thus, participants experienced advisors as

intentional and helpful, which are core characteristics of social agents.

Model-based results
We used computational modeling with hierarchical Gaussian Filters (HGF; Figure 2) to explain partic-

ipants’ responses on every trial. To contrast competing mechanisms underlying learning and arbitra-

tion, our model space included a total of nine models (Figure 3a). Non-normative perceptual

models varied in complexity of volatility processing (three-level full HGF vs. two-level no-volatility

HGF), normative perceptual models assumed optimal Bayesian inference (normative HGF), and

response models varied in the extent of arbitration (arbitration; no arbitration: advice only; no
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arbitration: card information only). Bayesian model selection (Stephan et al., 2009) served to com-

pare models (see Materials and methods and Figure 2 for details). For model comparison, we used

the log model evidence (LME), which represents a trade-off between model complexity and model

fit.

Do participants arbitrate between advice and individually sampled card
outcomes?
The winning model was the three-level HGF with arbitration (fp = 0.999; Bayes Omnibus Risk =

4.26e-11; Figure 3b; Table 1a). This model formalised arbitration as a ratio of precisions: the preci-

sion of the prediction about advice accuracy and color probability, divided by total precision. More-

over, the model included a social bias parameter reflecting the degree to which participants

followed the advisor irrespective of task information. The model family that included volatility of

both information sources outperformed models without volatility, in-keeping with the model-inde-

pendent finding that perceived volatility of both information sources affected behavior.

Is the parameter estimation robust?
The winning three-level full HGF model includes multiple parameters that need to be estimated. A

general question is whether these parameters are ‘practically identifiable’, that is whether their val-

ues can be recovered accurately given the actual experimental design. To examine this question, we

simulated responses based on all participants’ maximum-a-posteriori estimates of the parameters,

and then fitted the model to those simulated responses in order to test whether we could recover

the same parameter estimates.

Figure 3. Hierarchical structure of the model space and model selection results. (a) The learning and arbitration models considered in this study have a

3 � 3 factorial structure and can be displayed as a tree. The nodes at the top level represent the perceptual model families (three-level HGF, normative

HGF, two-level non-volatility HGF). The leaves at the bottom represent response models which integrate and arbitrate between social and individual

sources of information (‘Arbitrated’) or exclusively consider social (‘Advice’) or individual (‘Card’) information. (b) Random effects Bayesian model

selection revealed one winning model, the Arbitrated three-level HGF. Posterior model probabilities or p mjyð Þ indicated that this model best explained

participants’ behavior in the majority of the cases.
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To assess and compare degrees of parameter recovery, we categorized it in terms of effect sizes,

that is, whether the relationship between the original and the recovered values indicates small,

medium, or large effect sizes as quantified by Cohen’s f . For a multiple regression analysis, a

Cohen’s f above 0.4 is conventionally regarded as a large effect size. Based on this criterion, we

could recover all parameters well, as all Cohen’s f values equaled or exceeded 0.4 (see Figure 2—

figure supplement 1).

Do participants differ in how they learn from advice and use it to
predict lottery outcomes?
Three parameters modulated the arbitration signal of the winning model. These included: (i) k or the

coupling between the two hierarchical levels that determined the impact of volatility on the inferred

predictions of each information source (Equation 6), (ii) #, determining the variance of the volatility

(Equation 12), and (iii) z, the social bias which reflected the reliance on the advice independent of

its reliability (Equation 19). Both coupling k and volatility parameter # did not differ significantly

Table 1. (a) Results of Bayesian model selection: Model probability (p mjyð Þ) and protected

exceedance probabilities (fp).

Please refer to the participants’ LME and BMS results in Table 1—source datas 1 and

2, respectively. (b) Average maximum a-posteriori estimates of the learning and arbitration parame-

ters of the winning model (Arbitrated three-level HGF). Please refer to participants’ individual poste-

rior parameter estimates for perceptual and response model parameters in Table 1—source datas 3

and 4.

Perceptual Models:

Response models: Arbitrated Advice Only Card Only

3-level HGF

p mjyð Þ 0.63 0.04 0.02

fp 0.99 4.7e-12 4.7e-12

Normative HGF

p mjyð Þ 0.03 0.03 0.02

fp 4.7e-12 4.7e-12 4.7e-12

2-level HGF

p mjyð Þ 0.15 0.06 0.02

fp 6.2e-05 4.7e-12 4.7e-12

Perceptual Model
Parameters Mean SD

Response Model
Parameters Mean SD

kc 0.58 0.17 z 1.03 1.24

ka 0.56 0.28 b1 �1.59 0.94

#c 0.59 0.07 b2 1.42 1.69

#a 0.62 0.09 b3 0.23 1.37

b4 0.63 1.24

b5 �2.97 2.47

b6 �0.51 1.83

bch 2.25 0.92

The online version of this article includes the following source data for Table 1:

Source data 1. Log model evidences for all models.

Source data 2. Random effects Bayesian model selection.

Source data 3. Maximum a posteriori estimates of the perceptual model parameters and response model

parameters influencing choice along with subject IDs.

Source data 4. Maximum a posteriori estimates of the response model parameters influencing wagers along with

subject IDs.
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between learning from individual and social information (t(36) = 0.28, p=0.77 for k and t(36) = -1.59,

p=0.12 for #; Figure 4a-b). In fact, they were highly correlated: r1=0.55, p1=0.003 for k and r2=0.64,

p2=0.001 for #. This result suggests that participants learned similarly from individual (volatile card

probabilities) and social (advisor fidelity) information.

The reliability-independent social bias parameter z differed significantly from zero (t(36) = 5.09,

p=1.07e-05). Importantly, since the social bias parameter z is coded in log-space, the prior value of

zero refers to a uniform weighting of the two cues in linear parameter space. Thus, on average, par-

ticipants relied more on the advisor’s recommendations compared to their own sampling of the card

outcomes (Figure 4c).

Do the response model parameter estimates explain wager behavior?
Decisions of how many points participants were willing to wager on a given trial (a measure of confi-

dence) were related to several model-based quantities, including (irreducible) uncertainty of the

agent’s beliefs about the decision, arbitration, and the estimated volatility of the advisor’s intentions

(belief uncertainty: t(37) = -10.37, pbonf = 1.0e-11; arbitration: t(37)=5.16, pbonf = 5e-05; and esti-

mated advisor volatility: t(37)=-7.41 pbonf = 4.75e-08) (Figure 5). The stronger the bias to arbitrate in

favor of social information, the more points participants wagered. Conversely, estimated advisor vol-

atility was negatively associated with the amount wagered: the higher the estimated advisor volatil-

ity, the fewer points participants were willing to wager on a given trial (see Table 2 for the priors

over the parameters, Table 1b for all parameter estimates, and Figure 5 for the trial-wise influence

of the average computational quantities on wager amount).

Do the model parameter estimates explain perceived advice accuracy
and wager amount?
We aimed to examine at the behavioral level whether the model predictions were consistent with

participants’ perceptions of the advice accuracy during the experiment. Participants judged advice

accuracy (i.e. helpful, misleading, or neutral with regard to predicting actual card color) in a multiple-

choice question presented 5fivetimes during the experiment (initial/prior: 1st trial; stable advice, sta-

ble card phase = (14th trial); stable advice, volatile card phase (49th trial); volatile advice, volatile

card phase (73rd trial); volatile advice, stable card phase = 115th trial). We first tested whether the

responses to these questions positively related to estimates of advice accuracy (�
kð Þ
1;aÞ that were

extracted from the winning model. A linear regression analysis demonstrated that the inferred

advice accuracy or �
kð Þ
1;a measured at the time of the multiple-choice question, predicted participants’

selections. Specifically, the estimated beta parameter estimate across all task phases was signifi-

cantly different from zero (t(36) = 4.71, p=3e-05). These findings suggest that the model predicted

independently (and discretely) measured perception of advice accuracy, in-keeping with the internal

validity of the model.

Next, we tested whether the wager amounts predicted by the model correlated with participants’

actual wagers. In all four conditions of the task, the predicted wager significantly correlated with the

number of points participants actually wagered: (i) advice stable phase r1 = 0.62, p1 = 3e-05; (ii)

advice volatile phase r2 = 0.63, p2 = 2e-05; (iii) card stable phase r3 = 0.81, p4 = 9e-10; and (iv) card

volatile phase r4 = 0.80, p4 = 1e-09 (Figure 5—figure supplement 1). These findings suggest that

the winning model explained variation in (the continuously measured) actual wager amount.

Do the model parameter estimates explain participants’ self-reports?
We used classical multiple regression and post-hoc tests to examine whether the model parameter

estimates extracted from the winning model (M1) explained participants’ advisor ratings, as mea-

sured by debriefing questions after the main experiment outside the scanner. Participants who

reported that the advisor intentionally tried to help or mislead at different phases of the task showed

a trend towards a larger estimate of the social weighting parameter z (df = (1,36), F = 3.49, p =

0.06). Moreover, advice helpfulness ratings were explained by model parameter estimates (R2 =

32.2%, F = 2.46, p=0.04). This effect was primarily driven by parameter ka (r(37)=0.47, p=0.0026),

indicating that participants who rated the advice as being helpful showed stronger coupling

between two levels of the hierarchical model. More specifically, participants who rated the advice as

more helpful displayed higher ka values, that is, increased sensitivity to the changing phases of

Diaconescu et al. eLife 2020;9:e54051. DOI: https://doi.org/10.7554/eLife.54051 8 of 35

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.54051


Figure 4. Inference and arbitration of individual and social learning. (a) Average trajectories for arbitration and hierarchical precision-weighted PEs for

individual and social learning (see Materials and methods for the exact equations): �a = arbitration in favor of the advice (Equation 19); �c = arbitration

in favor of individually estimated card color probability (Equation 20). �1;a = estimated advice accuracy (Equation 4); �1;c = individually estimated card

color probability (Equation 18). "2;a = precision-weighted prediction error (PE) of advisor fidelity (Equation 8); "2;c = unsigned (absolute) precision-

weighted PE of card outcome (absolute value of Equation 14). "3;a = precision-weighted advice volatility PE (Equation 13); "3;c = precision-weighted

card color volatility PE (Equation 15). Line plots were generated by averaging the computational trajectories of the winning (Arbitrated 3-HGF:

Figure 2) model across all participants for each of the 160 trials. The shaded area around each line depicts +/- standard error of the mean over

participants. (b) Group means, standard deviations and prior values for the perceptual model parameters determining dynamics of computational

trajectories in (a). Jittered participant-specific estimates are plotted for each perceptual model parameter, red lines indicate the group mean, grey

areas reflect 1 SD of the mean, and colored areas the 95% confidence intervals of the mean. (c) Distribution of log(z) values. In (b) and (c), black

diamonds denote the priors of each parameter (for details, see Table 2).
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advice validity, adjusting their wagering behavior more strongly to the advisor’s strategy. Thus, not

only did the participants perceive the advice in our task as intentional and helpful, our model also

explained some of these impressions.

Neural signatures of arbitration
Using behaviorally fitted computational trajectories to generate participant-specific GLMs for model-

based fMRI analysis, we examined how the brain arbitrates between social and individual learning

systems. We conceptualized the learning and arbitration process as hierarchical Bayesian inference,

and fitted the participant-specific trajectories that reflect arbitration (Equation 20) to fMRI data.

Hierarchical precision-weighted PE signals were replicated in the same dopaminergic and fronto-

parietal regions as in previous studies using other sensory and social learning domains (see

Iglesias et al., 2013; Diaconescu et al., 2017), indicating that the modifications in the experimental

paradigm did not affect basic learning processes (see Figure 6—figure supplements 1–2).

Undirected tests for arbitration activity identified ventral prefrontal regions, such as the left ven-

tromedial PFC (peak at [-2, 46,–10]) and the right orbitofrontal cortex (OFC) [26, 34, -10]. Interest-

ingly, frontal activations also included the right frontopolar cortex [4, 54, 30] and ventrolateral

prefrontal cortex (VLPFC) [50, 36, 0], regions previously associated with arbitration between model-

based and model-free forms of individual learning (Lee et al., 2014; Figure 6). The right VLPFC

showing arbitration-related effects at [48, 35, -2] significantly overlapped with the arbitration-related

reliability activations detected by Lee and colleagues, supporting the notion that arbitration is to

some extent domain-independent.

In addition, we found that a wide network of cortical and subcortical regions contributes to arbi-

tration that included occipital areas, the anterior insula, left thalamus, left putamen, bilateral middle

cingulate sulcus, supplementary motor area (SMA) [�2, -8, 52], left dorsal middle cingulate gyrus

[�10,–26, 44], the right amygdala [18, -10, -16] and the left midbrain [�6,–18, �12] (Table 3, Fig-

ure 6). Thus, a network of cortical and subcortical regions contributed to arbitration.

Directed tests for arbitration in favor of individual over social information identified activity

increases in the right dorsolateral PFC [36, 46, 30], left SMA/anterior cingulate sulcus [�2,–8, 52] and

Table 2. Prior mean and variance of the perceptual and response model parameters.

Model Prior mean Prior variance

Perceptual models:

Three-level HGF ka, kc 0.5 1

#a, #c 0.55 1

Normative HGF ka, kc 0.5 0

#a, #c 0.55 0

Two-level HGF #a, #c 0.00062 0

Response models:

b1�6 0 4

bch 48 1

b0 6.21 4

bwager 1.50 100

1. Arbitrated z 0 25

2. Advice Only z Inf 0

3. Card Only z 0 0

Note: The prior variances are given in the numeric space in which parameters are estimated. k, #, and �
k¼0ð Þ
3

are esti-

mated in logit-space, while the other parameters are estimated in log-space. Although the prior variances for all

parameters are set to be rather broad, we selected a shrinkage prior mean and variance for the decision noise

parameter bch such that behavior is explained more by variations in the remaining parameters rather than decision

noise.
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Figure 5. Computational quantities and model parameters explaining wager amount. (a) With our response model, we predicted that the actual trial-

wise wager (right) could be explained (left and bottom) by the six key trajectories (see Equation 21) given in (b). These include (i) (irreducible) belief

uncertainty (based on the integrated belief of individual and advice predictions; Equation 24); (ii) arbitration in favour of advice (Equation 19);

(iii) informational uncertainty (Equation 25) and volatility of the advice (Equation 26) and (iv) informational uncertainty and volatility of the card (same

Equations 25 and 26, but for the card modality). (a) and (b) show group averages (see Materials and methods for the exact equations). For the model-

based parameters, the line plots were generated by averaging the computational trajectories of the winning (Arbitrated 3-HGF: Figure 2) model across

all participants for each of the 160 trials. The shaded areas depict +/- standard error of this mean over participants. (c) Group means, standard

deviations and prior values for the response model parameters determining the impact of those trajectories (i.e. uncertainties and arbitration) on trial-

wise wager amount. Jittered raw data are plotted for each parameter. Red lines indicate the mean, grey areas reflect 1 SD from the mean, and the

colored areas the 95% confidence intervals of the mean. The black diamonds denote the prior of the parameters, which in this case is zero. *p<0.05, **p

<0.001. (d) Scatter plots with average actual wager on the x-axis and average of the computational variables assumed to impact the trial-wise wager:

belief uncertainty, arbitration in favor of advice, and volatility of advice on the y-axes, respectively. The correlation coefficients (with corresponding p

Figure 5 continued on next page
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the midbrain [�6,–18,�12] (Figure 7a). The BOLD signal change in these regions peaked during the

time window of the wager decision. In summary, primarily dorsal regions of PFC were modulated by

arbitration in favor of individually estimated card probability.

Conversely, activity in the right amygdala, VLPFC, orbitofrontal and ventromedial PFC was modu-

lated by arbitration in favor of the advisor’s suggestions (Figure 7b). Outside PFC, the right anterior

TPJ [56, -52, 24], right superior temporal gyrus [52, -18, -8], and right precuneus [6, -51, 32] showed

similar effects (Tables 4 and 5 for the entire list of brain regions). Thus, primarily ventral regions of

PFC together with temporal and parietal regions were more active during arbitration in favor of

social information.

To examine effects of arbitration in dopaminergic, cholinergic, and noradrenergic regions, we

also performed region-of-interest (ROI) analyses using a combined anatomical mask of dopaminer-

gic, cholinergic, and noradrenergic nuclei. A single cluster in the right substantia nigra survived

small-volume correction (p<0.05 FWE voxel-level corrected for the entire ROI; peak at [�6,–18,

Figure 5 continued

values), regression slopes, and effect sizes (Cohen’s f ) are included to quantify the relationship between the actual wager and the computational

quantities that showed a significant relation to wagers.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model validity with regard to wager amount.

Figure 6. Whole-brain undirected arbitration signals. Effects of arbitration in favor of one or the other source of information were detected in

ventromedial PFC, orbitofrontal cortex, right frontopolar cortex, VLPFC, the left midbrain, bilateral fusiform gyrus, lateral occipital gyrus, lingual gyrus,

anterior insula, right amygdala, left thalamus, right cerebellum, bilateral middle cingulate sulcus and SMA. The figure shows whole-brain FWE-corrected

voxel (red) - and cluster-level-corrected (yellow) results of an undirected F-test, p<0.05 (CDT = cluster defining voxel-level threshold).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Main effects of precision-weighted PEs about card and advice outcomes (Equations 8 and 14).

Figure supplement 2. Main effects of precision-weighted PEs about card and advice volatility.
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�12]; Figure 8). Activity in this region increased with arbitration in favor of individual estimates of

card probabilities rather than advice.

It is important to note that these regions showed significantly larger effects of arbitration than of

the amount of points wagered. Responses reflecting arbitration dominated over responses reflecting

wager amount in cerebellar, midbrain, occipital, parietal, medial prefrontal, and temporal regions

including the amygdala. Activity in precuneus and ventromedial prefrontal cortex in turn correlated

with wager amount (Figure 9). As wager amount can be taken as a proxy for decision value or confi-

dence (Lebreton et al., 2015), these data suggest that arbitration signals arise on top of decision

value and confidence. Moreover, we captured arbitration as a model-derived, continuous, and time-

resolved variable. Thus, our findings elucidate the process rather than the result of arbitration.

Main effect of stability and interaction with source of information
To examine arbitration from a different angle, we also conducted a factorial analysis. This was possi-

ble because we employed a 2 � 2 factorial design – that is, two sources of information (individual

versus social) in two different states (stable versus volatile) (Figure 10a). Specifically, we contrasted

volatile with stable phases across both information modalities. Volatility is closely tied to arbitration

because it potentiates the perceived uncertainty associated with a given information source, and

thereby the need to arbitrate. We assumed that arbitration increased when one of the two informa-

tion sources was perceived as being more stable than the other. In all comparisons, we controlled

for decision value and confidence by using the trial-wise wager amount as a parametric modulator in

the analysis of brain data. We found two significant results (Figure 10b): (i) a main effect of task

Table 3. MNI coordinates and F-statistic of maxima of activations induced by either form of arbitration (Equations 19-20; p<0.05,

cluster-level whole-brain FWE corrected).

Related to Figure 7.

Hemisphere X Y Z # Voxels F-statistic

� kð Þ

Midbrain L -6 �18 �12 20 23.49

Thalamus L �12 �18 8 490 59.87

Anterior insula L �44 2 0 1744 52.97

Anterior insula R 48 6 -2 813 31.56

Fusiform gyrus R 28 �78 �10 1327 75.32

Fusiform gyrus L �28 �76 �10 227 39.55

Inferior occipital gyrus R 48 �68 �10 810 52.70

Inferior occipital gyrus L �42 �68 -4 1519 67.56

Calcarine sulcus R 12 �86 6 22285 199.99

Superior temporal gyrus L �60 �30 -2 79 24.02

Superior temporal sulcus R 52 �18 -8 104 30.35

Amygdala R 18 �10 �16 76 27.01

Precuneus R 4 �52 30 238 38.50

Dorsal medial PFC L �10 44 52 108 23.14

Superior medial PFC R 4 56 28 493 39.83

Ventrolateral PFC R 50 36 0 202 24.28

Frontopolar cortex R 4 54 30 138 24.28

Orbitofrontal cortex R 26 34 �10 80 30.47

Ventromedial PFC L -2 46 �10 393 37.43

Supramarginal gyrus R 54 �30 50 46.46 952

Cerebellum R 18 �48 �18 1919 166.69
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phase (i.e. stability/volatility), and (ii) a significant interaction of task phase with source of

information.

By contrasting stable against volatile phases, irrespective of information source, we found that

the right supramarginal gyrus, bilateral inferior occipital gyri, postcentral/precentral gyri, and the

right anterior insula were more active for stable compared to volatile periods. Furthermore, an inter-

action between task phase and information source showed preferential activity for stable card infor-

mation in the midbrain [�4,–22, �8]. Additional activations were detected in the right OFC, VLPFC,

dorsomedial cingulate gyrus, and anterior cingulate sulcus/SMA (Figure 10; Table 6 and Table 7).

These regions processed stability (vs. volatility) more strongly for card than advice information.

Importantly, the regions processing stability (vs. volatility) more strongly for advice than card

information also overlapped with the arbitration signal, and included the amygdala, the superior

temporal sulcus, and the ventromedial PFC (Figure 11). Thus, model-dependent and model-inde-

pendent analyses agree in localizing arbitration to frontoparietal regions in the individual domain

and to ventromedial prefrontal and amygdala regions in the social domain.

Figure 7. Neural arbitration directed to specific source of information. (a) Activity in the left midbrain (substantia nigra (SN)) [�6,–18, �10] (top) and the

right DLPFC [36, 46, 30] (bottom) during the prediction of card color increased more when participants arbitrated in favor of individually estimated card

color probability as compared to the advisor’s suggestions (whole-brain FWE cluster-level corrected, p<0.05). (b) Activity in right (OFC [28, 26, -16] (top)

and in right amygdala [18, -10, -16] (bottom) increased more when participants arbitrated in favor of the advisor’s suggestion than when they arbitrated

in favor of the individually learned estimates of card probability (whole-brain FWE cluster-level corrected, p<0.05). The line plots reflect the average

BOLD signal activity in the respective significantly activated cluster aligned to the onset of advice presentation relative to pre-advice baseline averaged

across trials for one representative participant in midbrain and DLPFC (a) or OFC and amygdala (b). The shaded areas depict + / - standard error of this

mean. In this figure, the scales reflect t-values.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Social versus non-social weighting (Equation 21).
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Are there neural differences in the representation of social versus non-
social information?
To address the question of distinct representation of social compared to non-social signatures of

learning, we investigated precision-weighted predictions of social and non-social outcomes. The pre-

cision-weighted predictions consist of the two factors that enter the computation of integrated

beliefs (Equation 21) about the outcome. The first reflects the individual card color estimates

weighted by arbitration in favor of the individually sampled card probabilities (non-social weighting),

whereas the second reflects the predictions of advice accuracy weighted by arbitration in favor of

the advisor (social weighting). Increased effects of non-social compared to social weighting were

detected in bilateral cerebellum, occipital cortices (lingual gyrus, superior occipital cortex), left

Table 4. MNI coordinates and t-statistic of maxima of activations induced by arbitration for the individually estimated card reward

probability (Equation 20; p<0.05, cluster-level whole-brain corrected).

Related to Figure 8a.

Hemisphere X Y Z # Voxels t-statistic

� kð Þ
c : Positive correlations

Midbrain L -6 �18 �10 95 4.94

Thalamus L �16 �18 8 232 5.10

R 22 �30 4 206 5.10

Anterior insula L �44 2 0 2232 7.28

R 36 16 8 943 6.23

Supplementary motor area/anterior cingulate sulcus L -2 -8 52 1688 6.29

Dorsolateral PFC R 36 46 30 136 5.93

Middle occipital gyrus R 12 �86 6 237 11.70

L �32 �82 16 136 8.26

Superior occipital gyrus R 28 �78 30 343 11.00

L �26 �82 32 143 8.73

Cerebellum R 18 �48 �18 21557 12.91

Table 5. MNI coordinates and t-statistic of maxima of activations induced by arbitration for the social advice (Equation 19; p<0.05,

cluster-level whole-brain FWE corrected).

Related to Figure 8b.

Hemisphere X Y Z # Voxels t -statistic

� kð Þ
a : Positive correlations

Precuneus R 6 �51 32 284 6.25

Amygdala R 18 �10 �16 107 5.20

Anterior cingulate cortex L -2 44 �10 136 4.82

Ventromedial PFC R 8 52 14 231 5.72

Ventrolateral PFC R 50 36 0 305 4.93

Frontopolar cortex R 4 62 22 153 4.59

Orbitofrontal cortex R 28 26 �16 126 5.11

Middle frontal gyrus R 38 14 28 305 5.36

Superior temporal gyrus L �60 �30 -2 107 4.90

Superior temporal sulcus R 52 �18 -8 152 5.51

Anterior temporoparietal junction R 56 �52 24 173 4.18

Cerebellum L �24 �84 �34 121 4.11
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anterior cingulate sulcus, right supramarginal gyrus, and left postcentral gyrus. Conversely, we found

increased representations of social compared to non-social weighting in the left subgenual ACC with

a maximum at [�7, 36,–11] (Figure 7—figure supplement 1).

Replication of hierarchical precision-weighted PE effects across learning
domains
To test whether the task used in this study replicates previous findings on the representation of hier-

archical precision-weighted PEs (Diaconescu et al., 2017; Iglesias et al., 2013), we performed the

same model-based analysis using Bayesian surprise (equivalent to an unsigned precision-weighted

Figure 8. Arbitration signals in neuromodulatory ROI. Activation of the dopaminergic midbrain was associated with arbitrating in favor of individually

learned information. Activation (red) is shown at p<0.05 FWE corrected for the full anatomical ROI comprising dopaminergic, cholinergic, and

noradrenergic nuclei (yellow).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Neuromodulatory nuclei anatomical mask.

Figure 9. Arbitration vs. Wager Amount. Effects of arbitration (individual) (blue) were significantly larger in cortical

and subcortical brain regions when compared to wager amount. Effects of arbitration in favor of social information

were also significantly larger in ventromedial PFC and amygdala when compared to wager amount (green).

Activity in precuneus and ventromedial PFC regions increased with increases in wager amount (magenta) (whole-

brain FWE cluster-level corrected, p<0.05).
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outcome PE; the absolute value of Equation 14). Replicating the previous study (Iglesias et al.,

2013), we found that the outcome-related BOLD activity of the substantia nigra positively correlated

with the unsigned precision-weighted outcome PE, as did the bilateral inferior/middle occipital gyri,

anterior insula, (ventro)lateral PFC, and the intraparietal sulcus (Figure 6—figure supplement 1a

and Supplementary file 1A). In the previous study, participants predicted a visual outcome using an

auditory cue (Iglesias et al., 2013). Thus, the PE coding of these regions seems to be sensory

modality-independent.

With respect to the signed precision-weighted advice PE (Equation 8), we also replicated results

from another recent study (Diaconescu et al., 2017) that employed a different advice-taking para-

digm, where participants learned about advice and integrated it along with unambiguous individual

information to predict the outcome of a binary lottery. Effects of signed precision-weighted advice

PE were detected in right VTA/substantia nigra, the right insula, left middle temporal cortex, right

dorsolateral, left dorsomedial and middle frontal cortex (Figure 6—figure supplement 1b and

Supplementary file 1B).

Please note that we used the unsigned (absolute) precision-weighted PEs for the card outcomes,

but the signed precision-weighted PEs for the advice. In the case of the card, the sign of this PE

depends on an arbitrarily chosen coding of the color and the sign is meaningless (see Iglesias et al.,

Figure 10. Activations related to task phase and interaction with source of information. (a) The task mapped onto a factorial structure with four

conditions: (i) stable card and stable advisor, (ii) stable card and volatile advisor, (iii) volatile card and stable advisor, and (iv) volatile card and volatile

advisor, as reflected by the shaded areas: blue (stable), grey (volatile). (b) The main effect of stability irrespective of source of information activated

primarily parietal regions and the anterior insula (cyan, whole-brain FWE cluster-level corrected, p<0.05). Moreover, the interaction between task phase

and source of information was localized to left midbrain, occipital regions, anterior insula, thalamus, middle cingulate sulcus, SMA, OFC, and VLPFC

(magenta, whole-brain FWE cluster-level corrected, p<0.05).
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2013). In contrast, for the advice, the sign refers to the valence and instances of surprise where the

advisor was more helpful than predicted, and may have a different meaning than instances of sur-

prise where the advisor was more misleading than predicted (see Diaconescu et al., 2017). For com-

pleteness, we also investigated the neural correlates of the signed reward precision-weighted PE

and noted a similar network of posterior parietal and dorsolateral prefrontal regions.

Effects of precision-weighted volatility PEs for card outcomes were represented in the right supe-

rior temporal gyrus, supramarginal gyrus, and posterior insula (Figure 6—figure supplement 2a)

while the effects of precision-weighted volatility PEs for the adviser fidelity were encoded in the right

anterior supplementary motor area (SMA) and anterior insula.

Table 6. MNI coordinates and F-statistic for main effects of stability (p<0.05, FWE whole-brain corrected).

Related to Figure 11 (activations in cyan).

Hemisphere X Y Z # Voxels F-statistic

Stability > Volatility

Supramarginal gyrus R 46 �28 42 1199 38.16

Inferior occipital gyrus R 46 �66 0 580 33.99

L �46 �70 4 256 20.82

Anterior insula R 34 20 2 98 29.30

Postcentral gyrus L �52 2 34 107 28.97

R 54 �22 34 129 5.59

Precentral gyrus L �60 �20 32 512 40.21

R 50 4 32 129 20.58

Middle frontal gyrus L �26 0 58 117 20.18

Table 7. MNI coordinates and F-statistic for interactions between task phases and stimulus type (p<0.05, FWE whole-brain

corrected).

Related to Figure 11 (activations in magenta).

Hemisphere X Y Z # Voxels F-statistic

Information Source � Task Phase

Midbrain L -4 �22 -8 154 48.03

Thalamus L �12 �24 0 189 116.73

R 16 �30 2 154 104.27

Middle cingulate gyrus L �10 16 32 94 37.10

Anterior insula L �34 -2 10 88 26.71

Supplementary motor area/anterior cingulate sulcus L -6 -2 56 736 104.45

Dorsolateral PFC L �38 52 8 133 22.96

R 34 34 34 94 21.02

Inferior occipital gyrus R 44 �66 6 3600 190.83

L �40 �76 �12 3300 162.67

Superior occipital gyrus R 28 �78 30 80 23.54

L �26 �82 32 81 28.64

Orbitofrontal cortex L 0 48 �22 189 100.84

R 2 40 �24 180 34.66

Ventrolateral prefrontal cortex L �46 48 �12 81 37.69

R 50 44 -8 80 23.53

Cerebellum R 30 �86 �42 95 25.15
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Finally, we also replicated the finding that higher-level, volatility PEs (Equations 13 and 15) were

represented in cholinergic regions. This time, however, we observed effects of advice volatility preci-

sion-weighted PEs in the cholinergic nuclei in the tegmentum of the brainstem, that is, the peduncu-

lopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei (p<0.05 FWE voxel-level within

an anatomical mask including all cholinergic nuclei) (Figure 6—figure supplement 2b).

Discussion
Our study shows how healthy participants arbitrate between uncertain social and individual informa-

tion under varying conditions of stability during a binary lottery task. (Figure 1). Participants arbi-

trated between the two information sources by taking into account their relative precision. The more

precise one information source was over the other and the more stable the advisor was perceived to

be, the more points participants were willing to wager.

By showing that participants tracked the volatility of both the advice and the card color probabili-

ties (Figure 3), our study underscores the importance of volatility in arbitrating between social

advice and individual reward-relevant information. At the behavioral level, trial-by-trial accuracy of

participant predictions, frequency of taking advice into account, and amount of points wagered on

each trial (Figure 5—figure supplement 1) were all reduced by volatility. Thus, in stable compared

to volatile environments, the propensity for arbitration in favor of the more precise information

Figure 11. Overlap between model-dependent and model-independent results. Arbitration signal (Equation 19) (yellow) overlapped with the regions

showing an enhanced effect of stability for individual compared to social learning systems (blue) and regions showing enhanced effects of stability in

the social compared to individual learning systems (red) (whole-brain FWE peak-level corrected, p<0.05).
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source increases. Numerous studies have demonstrated an important role of volatility in higher level

learning (Behrens et al., 2007; Behrens et al., 2008; Nassar et al., 2010; Iglesias et al., 2013;

Vossel et al., 2014; Diaconescu et al., 2017; Pulcu and Browning, 2017), in-keeping with the pres-

ent findings.

Evidence for domain-generality of arbitration in lateral prefrontal
cortex
Using both model-based and model-independent (factorial) fMRI analysis, we found that the arbitra-

tion signal correlated with activity in dorsolateral and ventrolateral PFC, frontopolar, and orbitofron-

tal cortex (Figures 6 and 11). These findings corroborate previous insights on arbitration between

different forms of individual information also pointing to lateral prefrontal cortex (Lee et al., 2014),

in line with domain generality for arbitrating. Note though that arbitration activity in the prefrontal

cortex followed a self-versus-other axis: dorsal prefrontal activity increased the more strongly partici-

pants weighed their own predictions of reward probabilities over the perceived reliability of the

advisor. Conversely, activity in the ventromedial PFC and orbitofrontal cortex showed the opposite

pattern and increased in activity as participants relied more heavily on their own reward probability

estimates relative to the advice (Figure 7). Together, arbitration appears to be sensitive to the

source of information entering the arbitration process, contrary to an entirely domain-general

process.

Arbitration in the dopaminergic system
The results of both model-based and factorial analyses suggest a key role of the midbrain in arbitrat-

ing for individual estimates about card color over advice (Figure 8). Primate studies found that sus-

tained dopamine neuron activity signaled expected uncertainty (Fiorillo et al., 2003; Schultz, 2010;

Schultz et al., 2008). This was further supported by human pharmacological studies (Burke et al.,

2018; Ojala et al., 2018) as well as fMRI research showing possible involvement of dopamine in risk

taking and of dopaminoceptive regions, such as the caudate, anterior insula, ACC and the medial

PFC in uncertainty coding (e.g. Dreher et al., 2006; Preuschoff et al., 2008; Tobler et al.,

2009) and social advice predictions under uncertainty (Henco et al., 2020). In particular, studies

employing hierarchical Bayesian models have identified ventral tegmental area/substantia nigra acti-

vation correlated to precision of predictions about desired outcomes (Friston et al., 2014;

Schwartenbeck et al., 2015).

These findings may also underscore the role of dopamine in modulating participants’ ability to

optimize learning to suit ongoing estimates of environmental volatility. Potential neurobiological

mechanisms include meta-learning models, which propose an important role of phasic dopamine sig-

nals in training prefrontal system dynamics, to infer on the statistical structure of the environment

(Collins and Frank, 2016; Wang et al., 2018). Such models imply that improved learning of the

structure of the environment, for example current levels of volatility, results in more appropriate arbi-

tration adjustment.

Arbitrating in favor of the advisor activates the amygdala and
orbitofrontal cortex
The amygdala processed perceived reliability of social information, reflected in activity increasing

the more participants discounted their own estimates of rewarded card color probabilities in favour

of the advisor’s recommendations. The amygdala has been implicated in processing facial expres-

sions related to affective ToM (Schmitgen et al., 2016) and more generally, processing affective

value and motivational significance of various stimuli, including other people (Güroğlu et al., 2008;

Zink et al., 2008; Zerubavel et al., 2015). Together these findings suggest that the amygdala may

represent the uncertainty of socially-relevant stimuli, inferred from processing the intentions of

others.

Similar to the amygdala, the orbitofrontal cortex showed a significant interaction between task

phase and information source, indicative of arbitrating in favor of social information. This finding is

consistent with the hypothesis that the orbitofrontal cortex and other areas of the social brain

evolved to enable primates and particularly humans to successfully navigate complex social situa-

tions (Dunbar, 2009). This notion received support from strong positive correlations between
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orbitofrontal cortex grey matter volume and social network size (Powell et al., 2012), as well as soci-

ocognitive abilities (Powell et al., 2010; Scheuerecker et al., 2010). Furthermore, in-keeping with a

role of orbitofrontal cortex in mental state attribution for ambiguous social stimuli (Deuse et al.,

2016), our findings suggest that this region reduces the uncertainty of social cues that signal

changes in intentionality.

With respect to social learning signatures, we observed that the sulcus of the ACC represents

predictions related to one’s own estimates of the card color outcomes, whereas the subgenual ACC

represents predictions about the advisor’s fidelity. This is consistent with previous findings that the

sulcus of ACC dorsal to the gyrus plays a domain-general role in motivation (Rushworth et al.,

2007; Rushworth and Behrens, 2008; Apps et al., 2016), whereas the gyrus of the ACC signals

information related to other people (Behrens et al., 2008; Apps et al., 2013; Apps et al., 2016;

Lockwood, 2016).

Implications for mentalizing disorders
An intriguing extension of the current study concerns the question of whether arbitration occurs dif-

ferently in patients with psychiatric and neurodevelopmental disorders involving ToM processes. If

so, how do these processing differences affect behavior? For example, individuals with autism spec-

trum disorder may preferentially rely on their own experiences rather than on the recommendations

of others. Indeed, they appear to represent social prediction errors less strongly than individuals

without autism (Balsters et al., 2017). Accordingly, they may be able to better infer the volatility of

the card color probability compared to the advice in our task. In contrast, patients with schizophre-

nia may be overly confident about their ability to judge advice validity due to fixed beliefs about the

advisor’s intentions (Freeman and Garety, 2014) or show an over-reliance on social information in

line with accounts of over-mentalization in this disorder (Montag et al., 2011; Andreou et al.,

2015). Future work may test these intriguing possibilities.

Limitations
One limitation of our study is that it did not include reciprocal social interactions, but rather used

pre-recorded videos of human partners. ToM processes may be more prominent in interactive para-

digms (Diaconescu et al., 2014) or interactions that involve higher levels of recursive thinking

(Devaine et al., 2014a; Devaine et al., 2014b). By extension, our study may have limited generaliz-

ability to real-world social interactions. However, assessing arbitration between social and individual

information necessitated the standardization of the advice given to each participant. To make the

task as close as possible to a realistic social exchange, the videos of the advisor were extracted from

trials when they truly intended to help or truly intended to mislead. More importantly, to adequately

compare learning from social and individual information in stable and volatile phases, we needed to

ensure that the two information types were orthogonal to each other and balanced in terms of

volatility.

Second, we did not include a non-social control task. Thus, it is unclear how ‘social’ the presently

investigated form of learning about the advisor’s fidelity and volatility actually is. The differences in

activated regions at least suggest that our participants processed the two sources of information dif-

ferently. However, whether the process we identified is specifically social in nature or rather reflects

learning from an indirect information source needs to be examined in future studies by including an

additional control condition.

In order to distinguish general inference processes under volatility from inference specific to

intentionality, we previously included a control task (Diaconescu et al., 2014), in which the advisor

was blindfolded and provided advice with cards from predefined decks that were probabilistically

congruent to the actual card color. This control task closely resembled the main task, with the excep-

tion of the role of intentionality. Model selection results suggested that participants in the control

task did not incorporate time-varying estimates of volatility about the advisor into their decisions. In

the current study, we tested this by including models without volatility, but found that they per-

formed substantially worse than models with volatility (see Figure 2 and Table 2a for details). Thus,

our participants appeared to process advisor intentionality.
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Conclusions
Our study indicates that arbitrating between social and individual sources of information corre-

sponds to weighing the relative reliability of each source. This process appears to engage different

brain regions for social and individual information, in-keeping with domain specificity. However, the

lateral prefrontal cortex appears to adjudicate between several different types of learning, in-keep-

ing with domain generality. These findings contribute to our understanding of arbitration in neuro-

typical individuals, which may provide a knowledge basis for future insight into disorders with

impaired arbitration.

Materials and methods

Participants
We recruited 48 volunteers (mean age 23.6 ± 1.4, 32 females) who were non-smokers, right-handed,

and had normal or corrected-to-normal vision. Participants had no history of neurological or psychi-

atric illness, or of drug abuse. Psychology students were excluded from participation because of pre-

vious exposure to similar advice-taking paradigms in their courses. Participants were asked to

abstain from alcohol 24 hr prior to the study and from medication, including aspirin, 3 days prior to

the study. We did not analyse the data of 10 participants: two pilot participants; one participant who

stopped the experiment midway due to head pain; one participant who fell asleep; and six partici-

pants where stimulus presentation malfunctioned during the experiment. Altogether, 38 participants

(mean age 24.2 ± 1.3; 26 females) entered the final analysis.

Stimuli and task
We modified the deception-free binary lottery game of Diaconescu et al., 2014. In each trial, the

participant had to predict the color of a card draw – blue or green. Participants could base their pre-

dictions on social information and/or on individually experienced recent outcome history (see below).

They received social information from the ‘advisor’, who held up a card in one of the two colors

before every draw, recommending to the participant which option to choose. The advisor based his

or her suggestion on information that was true with a probability of 80%, although the participants

were not informed of this fact. Furthermore, the advisor received monetary incentives to change his

or her strategy and thus provide either helpful or misleading advice at different stages of the game

(Figure 1b) with the average probability of advice being correct in 56% of trials. To compare partici-

pants in terms of their learning and decision-making parameters, we needed to standardize the

advice. This means that each participant received the same input sequence,that is order and type of

videos.

To display social information in a standardized fashion and gender-match advisors and partici-

pants, we created videos from two male and two female advisors, who changed their advice as a

function of the incentives in a previously recorded face-to-face session (see Diaconescu et al.,

2014). Their advice on each trial was recorded for an entire experimental session and the full-length

videos were edited into 2 s segments, focusing on the advice period. We received informed consent

from all advisors in the initial (face-to-face) behavioral study to record and use the advice-giving vid-

eos in subsequent studies. All video clips were matched in terms of their luminance, contrast, and

color balance using Adobe Photoshop Premiere CS6.

To standardize the advice, avoid implicit cues of deception, and make the task as close as possi-

ble to a social exchange in real time, the videos of the advisor were extracted from trials when they

truly intended to help or truly intended to mislead. Although each participant received the same

advice sequence throughout the task, the advisors displayed in the videos varied between partici-

pants, in order to ensure that physical appearance and gender did not impact on their decisions to

take advice into account. Advisor-to-participant assignment was randomized (within the gender-

matching constraint) and balanced. We found no differences in performance and degree of reliance

on advice between the four advisors: F(1,36) = 1.82, p=0.16.

In contrast to previous studies (Diaconescu et al., 2014; Diaconescu et al., 2017), participants

had to infer card color probabilities (blue versus green) from individually experienced outcomes of

previous trials rather than being provided with (changing) pie charts explicitly stating the probabili-

ties. In each trial, they had to arbitrate between following either social information (previous advice,
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inferring on intention) or individual information (previous cards, inferring on probability). Moreover,

also in contrast to previous studies, for each lottery prediction, participants wagered between one

and ten points to indicate how confident they were about their predictions. The tick mark on the

wager bar was randomly positioned in each trial to avoid providing a reference point (a regression

analysis confirmed that the starting position of the wager indeed failed to explain each participant’s

trial-wise wager selection, t(37) = �0.89, p=0.31). Depending on the correctness of the prediction,

the wager was added to or subtracted from the cumulative score and thereby affected the partici-

pant’s payment at the end of the experiment (see below).

Each trial (Figure 1a) began with a video of the advisor holding up a card, followed by a decision

screen in which participants selected the blue or green card. At the next screen, they were asked to

provide the wager. The subsequent outcome screen revealed the drawn card. Finally, the updated

cumulative score appeared. The color-to-button assignment used to convey the lottery prediction

(blue or green) and the orientation of the wager bar were randomized between participants to pre-

vent confounding with visuomotor processes.

Across trials, the color-reward probabilities and the advisor intentions varied independently of

each other. In other words, the probability distributions of the two information sources – card color

and advice – were designed to be statistically independent. This allowed for a 2 � 2 factorial design

structure, where trials could be divided into four conditions: (i) stable card and stable advisor, (ii) sta-

ble card and volatile advisor, (iii) volatile card and stable advisor, and (iv) volatile card and volatile

advisor in a total of 160 trials (Figure 1b). Based on this factorial structure, we predicted that arbitra-

tion signals would vary as a function of the stability of each information source.

Procedure
We explained the deception-free task to participants and ensured their comprehension with a writ-

ten questionnaire, which required them to describe the instructions in their own words. The task

instructions, which were originally presented to participants in their native German, were translated

into English for the purpose of this paper. Pronouns were adapted to the advisor’s gender: "The

advisor has generally more information than you about the outcome on each trial. The objective of

the advisor is to use this information to guide your choices and reach his/her own goals. Note that

the advisor does not have 100% accurate information about which color ‘wins’ and he/she might be

incorrect. Nevertheless, he/she will on average have better information than you and his/her advice

may be valuable to you." The actual experiment was divided into two sessions, with a 2-min break in

the middle when participants could close their eyes and rest. The first session included 70 trials and

the second session 90 trials.

To test the construct validity of our computational model and verify whether participants inferred

on the advisor’s fidelity, we asked them to rate the usefulness of the advisor’s card recommendation

based on a multiple choice question (including, ‘helpful,’ ‘misleading,’ or ‘neutral’). This question

was presented six times throughout the task and responses allowed us to assess whether at any

point in time, the model could significantly predict participants’ responses.

Participants could earn a bonus of 10 Swiss Francs for a cumulative score of at least 380 points,

and a bonus of 20 Swiss Francs for winning more than 600 points. Importantly, participants were not

given any information about the bonus thresholds in order to prevent induction of local risk-seeking

or risk-averse wagering behavior (reference point effects) when participants were close to a thresh-

old. Participants on average reached the first reward bonus and were paid 82.3 ± 8.4 Swiss Francs

(including the performance-dependent bonus) at the end of the study. After the task, participants

completed a debriefing questionnaire, and we revealed to them the general trajectory of the advi-

sor’s intentions.

Data acquisition and preprocessing
We acquired functional magnetic resonance images (fMRI) from a Philips Achieva 3T whole-body

scanner with an 8-channel SENSE head coil (Philips Medical Systems, Best, The Netherlands) at the

Laboratory for Social Neural Systems Research at the University Hospital Zurich. The task was pre-

sented on a display at the back of the scanner, which participants viewed using a mirror placed on

top of the head coil. The first five volumes of each session were discarded to allow for magnetic

saturation.
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During the task, we acquired gradient echo T2*-weighted echo-planar imaging (EPI) data with

blood-oxygen-level dependent (BOLD) contrast (slices/volume = 33; TR = 2665 ms; voxel

volume = 2�2 x 3 mm3; interslice gap = 0.6 mm; field of view (FOV) = 192�192 x 120 mm; echo

time (TE) = 35 ms; flip angle = 90˚). The images were oblique, slices with �20˚ right-left angulation

from a transverse orientation. The entire experiment comprised 1300 volumes, with 600 volumes in

the first session and 700 in the second. Heart rate and breathing of the participants were recorded

for physiological noise correction purposes using ECG and a pneumatic belt, respectively.

We also measured the homogeneity of the magnetic field with a T1-weighted 3-dimensional (3-D)

fast gradient echo sequence (FOV = 192�192 x 135 mm3; voxel volume = 2�2 x 3 mm3; flip

angle = 6˚; TR = 8.3 ms; TE1 = 2 ms; TE2 = 4.3 ms). After the experiment, we acquired T1-weighted

structural scans from each participant using an inversion-recovery sagittal 3-D fast gradient echo

sequence (FOV = 256�256 x 181 mm3; voxel volume = 1�1 x 1 mm3; TR = 8.3 ms; TE = 3.9 ms; flip

angle = 8˚).

The software package SPM12 version 6470 (Wellcome Trust Centre for Neuroimaging, London,

UK; http://www.fil.ion.ucl.ac.uk/spm) was used to analyse the fMRI data. Temporal and spatial pre-

processing included slice-timing correction, realignment to the mean image, and co-registration to

the participant’s own structural scan. The structural image underwent a unified segmentation proce-

dure combining segmentation, bias correction, and spatial normalization (Ashburner and Friston,

2005); the same normalization parameters were then applied to the EPI images. As a final step, EPI

images were smoothed with an isotropic Gaussian kernel of 6 mm full-width half-maximum.

BOLD signal fluctuations due to physiological noise were modeled with the PhysIO toolbox

(http://www.translationalneuromodeling.org/tapas) (Kasper et al., 2017) using Fourier expansions

of different order for the estimated phases of cardiac pulsation (3rd order), respiration (4th order)

and cardio-respiratory interactions (1st order; Glover et al., 2000). The 18 modeled physiological

regressors entering the subject-level GLM along with the six rigid-body realignment parameters and

regressors of interest were used to account for BOLD signal fluctuations induced by cardiac pulsa-

tion, respiration, and the interaction between the two.

Computational modeling
We formalized arbitration in terms of hierarchical Bayesian inference as the relative perceived reli-

ability of each information source. In other words, arbitration was defined as a ratio of precisions:

the precision of the prediction about advice accuracy and color probability, divided by the total pre-

cision. The precisions of the predictions afforded by each learning system are obtained by applying

a two-branch hierarchical Gaussian filter (Mathys et al., 2011; Mathys et al., 2014) along with a

response model (see below) to participants’ trial–wise behavior (i.e. choices and wagers).

Learning model: Hierarchical Gaussian Filter
The HGF is a model of hierarchical Bayesian inference widely used for computational analyses of

behavior (e.g. [Iglesias et al., 2013; Vossel et al., 2014; Hauser et al., 2014; de Berker et al.,

2016; Marshall et al., 2016]). To apply it to our task, we assumed that the rewarded card color (indi-

vidual learning) and the advice accuracy (social learning) varied as a function of hierarchically coupled

hidden states: x
kð Þ
1
; x

kð Þ
2
; . . . ; x kð Þ

n . They evolved in time by performing Gaussian random walks. At every

level, the step size was controlled by the state of the next-higher level (Figure 2a).

Starting from the bottom of the hierarchy, states x1; a and x1;c represented binary variables,

namely the advice accuracy (1 for accurate, 0 for inaccurate) and the rewarded card color (1 for blue,

0 for green). All states higher than x1 were continuous. They denoted (i) the advisor fidelity and ten-

dency for a given card color to be rewarded, and (ii) the rate of change of the advisor’s intentions

and card color contingencies, respectively. Four learning parameters, namely, ka, kc, #a and

#c determined how quickly the hidden states evolved in time. Parameter k represented the degree

of coupling between the second and the third levels in the hierarchy, whereas # determined the vari-

ability of the volatility over time (meta-volatility). This constitutes the generative model of the pro-

cess producing the outcomes observed by participants. The overall model and the formal equations

describing these relations in a social learning context are detailed in Diaconescu et al., 2014.
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Model inversion: agent-specific arbitration
In accordance with Bayes’ rule, we assumed that participants who make inferences on advice and

card colors form posterior beliefs over the hidden states (i.e. congruency of advice with actual card

color; rewarded card color) based on the outcomes they observe. Model inversion is the application

of Bayes’ rule to a generative model such as the one described above. This leads to a recognition or

perceptual model, which describes participants’ beliefs about hidden states. Assuming Gaussian dis-

tributions, these agent-specific beliefs are denoted by their summary statistics, that is m (mean) and

s (variance/uncertainty) or the inverse of the variance p ¼ 1=s (precision/certainty).

Using variational Bayes under the mean-field approximation, simple analytical trial-by-trial update

equations can be derived. The posterior means �
kð Þ
i or predictions on each trial k at each level of the

hierarchy i change as a function of precision-weighted prediction errors (PEs):

D�
kð Þ
i /

p̂
kð Þ
i�1

p
kð Þ
i

d
kð Þ
i�1

(1)

Throughout, predictions or prior beliefs about the hidden states (before observing the outcome)

are denoted with a hat symbol. States p̂
kð Þ
i�1

and p
kð Þ
i represent the estimated precisions about (i) the

input from the level below (i.e. precision of the data – advice congruency or rewarded card color)

and (ii) the belief at the current level, respectively.

The updates about the advisor’s fidelity are:

D�
kð Þ
2;a ¼

1

p
kð Þ
2;a

d
kð Þ
1;a (2)

where

d
kð Þ
1;a ¼ u kð Þ� �̂

kð Þ
1;a: (3)

Variable u kð Þ is the sensory input at trial k, where given advice is either accurate uðkÞ ¼ 1
� �

or inac-

curate u kð Þ ¼ 0
� �

. Furthermore, �̂
kð Þ
1;a corresponds to the logistic sigmoid of the current expectation of

the advisor fidelity:

�̂
kð Þ
1;a ¼ s �

k�1ð Þ
2;a

� �

¼
1

1þ exp ��
k�1ð Þ
2;a

� � (4)

The current belief precision is equivalent to:

p
ðkÞ
2;a ¼ p̂

ðkÞ
2;aþ

1

p̂
ðkÞ
1;a

(5)

with the predicted (i) belief precision p̂
ðkÞ
2;a and (ii) the sensory, lower-level precision about the advice

p̂
ðkÞ
1;a computed as:

p̂
kð Þ
2;a ¼

1

1

p
k�1ð Þ
2;a

þ exp k�
k�1ð Þ
3;a þ!

� � (6)

p̂
kð Þ
1;a ¼

1

�̂
kð Þ
1;a 1� �̂

kð Þ
1;a

� � : (7)

Thus, the advice belief precision depends on (i) the predicted sensory precision of the input p̂
ðkÞ
1

,

and (ii) the predicted volatility, �
k�1ð Þ
3;a from the level above via Equation 6.

The precision-weighted PE about the advice, which is used to update the belief about fidelity is

equivalent to:
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"2;a ¼
1

p
kð Þ
2;a

d
kð Þ
1;a (8)

Going up the hierarchy, the updates of advice volatility are proportional to precision-weighted

PEs:

D�
kð Þ
3;a /

1

p
kð Þ
3;a

d
kð Þ
2;a: (9)

They depend on the higher-level volatility PE d2;a:

d
kð Þ
2;a ¼

p̂
kð Þ
2;a

p
kð Þ
2;a

þ p
kð Þ
2;a

� �2

p̂
kð Þ
2;a D�

kð Þ
2;a

� �2

�1; (10)

and the higher level volatility precision p3:

p
kð Þ
3;a ¼ p̂

kð Þ
3;aþ

1

2
g

kð Þ
2;a

� �2

þ g
kð Þ
2;a

� �2

d
kð Þ
2;a�

1

2
g

kð Þ
2;ad

kð Þ
2;a; (11)

with the precision of the prediction about volatility given by

p̂
kð Þ
3;a ¼

1

1

p
k�1ð Þ
3;a

þ#a

: (12)

The third level, the precision-weighted volatility PE is equivalent to:

"3;a ¼
1

p
kð Þ
3;a

d
kð Þ
2;a: (13)

The same form of update equations (and precision-weighted PEs) can be derived for the individ-

ual information source, updating beliefs about the rewarded card color, i.e.:

"2;c ¼
1

p
kð Þ
2;c

d
kð Þ
1;c (14)

and

"3;c ¼
1

p
kð Þ
3;c

d
kð Þ
2;c: (15)

The prediction errors exhibit a similar form as for the advice, with

d
kð Þ
1;c ¼ u kð Þ� �̂

kð Þ
1;c (16)

for the outcome PE and

d
kð Þ
2;c ¼

p̂
kð Þ
2;c

p
kð Þ
2;c

þ p
kð Þ
2;c

� �2

p̂
kð Þ
2;c D�

kð Þ
2;c

� �2

�1 (17)

for the card volatility PE. The individually estimated card color probability is equivalent to the logistic

sigmoid of the current expectation of the rewarding card color:

�̂
kð Þ
1;c ¼ s �

k�1ð Þ
2;c

� �

¼
1

1þ exp ��
k�1ð Þ
2;c

� � : (18)

In this context, Bayes-optimality is individualized with respect to the values of the learning param-

eters, which were allowed to differ across participants.
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Arbitration signal
Within this computational framework, we defined arbitration as the relative perceived precision asso-

ciated with each information source, which is equivalent to the precision of the prediction of each

information channel (advice or card; i.e. p̂) divided by the total precision. Arbitration is consistent

with Bayes’ rule representing the optimal integration of the two inferred states by their precisions.

Arbitration toward advice – that is the perceived reliability of the social information source is

equivalent to:

�
kð Þ
i;a ¼

zp̂
kð Þ
i;a

zp̂
kð Þ
i;a þ p̂

kð Þ
i;c

(19)

on each trial k at each level of the hierarchy i with z as the social bias or the additional bias towards

the advice.

At the first level and at i ¼ 1, the participant relies preferentially on the social input during action

selection when �
kð Þ
1;a exceeds 0.5. Conversely, when �

kð Þ
1;a is below 0.5 , the participant relies more on

individual (estimates of) card color probabilities:

�
kð Þ
1;c ¼

p̂
kð Þ
1;c

zp̂
kð Þ
1;a þ p̂

kð Þ
1;c

¼ 1� �
kð Þ
1;a (20)

Response model
To map beliefs to decisions, we assumed that the prediction of card color on a given trial k is a func-

tion of arbitration and of the predictions afforded by each source (see Equation 21). The response

model predicts two components of the behavioral response: (i) the participant’s decision to accept

or reject the advice and (ii) the number of points wagered on every trial. Responses were coded as

y ¼ 1 when participants took the advice and chose the card color indicated by the advisor, and y ¼ 0

when participants decided against following the advice and chose the opposite card color. The

expected outcome probability is thus a precision-weighted sum of the two information sources, the

estimates of advice accuracy and rewarding color probability.

�
kð Þ
1;b ¼ �

kð Þ
i;a � �̂

kð Þ
1;a þ �

kð Þ
1;c � �̂

kð Þ
1;c (21)

where �
kð Þ
i;a and �

kð Þ
1;c are the arbitration for each information source; �̂

kð Þ
1;a is the expected advice accu-

racy (Equation 4) and �
kð Þ
1;c is the transformed expected card color probability from the perspective

of the advice (i.e. the estimated card color probability indicated by the advisor).

It follows from Equation 21, that social weighting is represented by the first term of this inte-

grated sum – that is �
kð Þ
i;a � �̂

kð Þ
1;a whereas card color weighting is represented by the second term or

�
kð Þ
1;c � �̂

kð Þ
1;c.

The probability that participants chose a particular card color according to their expectations

about the outcome (Equation 21) was modeled by a softmax function:

p y
kð Þ
choice ¼ 1j�̂

ðkÞ
1;b

� �

¼
�̂
ðkÞbchoice

1;b

�̂
ðkÞbchoice

1;b þð1� �̂
ðkÞ
1;bÞ

bchoice

(22)

where bchoice>0 is the participant-specific inverse decision temperature parameter. A low decision

temperature (high bchoice) means always choosing the highest probability color, whereas a high deci-

sion temperature (low bchoice) means sampling randomly from a uniform distribution.

The number of points wagered provided us with a behavioral readout of decision confidence. We

aimed to formally explain trial-wise wager responses as a linear function of various sources of uncer-

tainty and precision associated with the lottery outcome prediction: (i) irreducible decision uncer-

tainty or ŝ
kð Þ
b about the outcome, (ii) arbitration, (iii) informational uncertainty about the card color or

the advice, and (iv) environmental uncertainty/volatility about the card color or the advice. We trans-

formed these computational quantities down to the first level in the hierarchy using the sigmoid
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transformation and used them to predict the trial-by-trial wager (Figure 5 for the group average of

each of these quantities):

log ywager
� �

¼ b0 þb1ŝ
kð Þ
b þ b2�

kð Þ
1

þb3I
kð Þ
2;a þb4I

kð Þ
2;c þb5V

kð Þ
3;a þb6V

kð Þ
3;c (23)

with

ŝ
kð Þ
b ¼ �̂

kð Þ
1;b 1� �̂

kð Þ
1;b

� �

: (24)

Parameter z captures the social bias in arbitration (equation 19) and I
kð Þ
2;a is the informational

uncertainty about the advisor fidelity

I
kð Þ
2;a ¼ �̂

kð Þ
1;a 1� �̂

kð Þ
1;a

� �

ŝ
kð Þ
2;a (25)

where ŝ
kð Þ
2;a is the inverse of p̂

kð Þ
2;a and represents the informational uncertainty of the prediction about

the advisor’s fidelity (Equation 6).

The environmental volatility is defined as:

V
kð Þ

3;a ¼ �̂
kð Þ
1;a 1� �̂

kð Þ
1;a

� �

exp �
k�1ð Þ
3;a

� �

: (26)

Equivalent equations can be derived for the individual information source.

The trial-wise wager amount predicted by the model is then defined as:

ŷwager¼
def

log ywager
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

bwager

q

(27)

where bwager is a stochasticity parameter associated with the wager amount. For the priors of all b

parameters estimated here, please refer to Table 2.

Competing models
To contrast competing mechanisms underlying learning and arbitration, our model space consisted

of a total of 9 models (Figure 3). On the one hand, we included non-normative perceptual models

varying in the degree of volatility processing (three-level full HGF vs. two-level no-volatility HGF) and

normative perceptual models assuming optimal Bayesian inference (normative HGF). On the other

hand, we included response models varying in the level of arbitration (arbitration; no arbitration:

advice only; no arbitration: card information only).

We considered three families of perceptual models. The first family included the full, three-level

version of the HGF (as described above). By contrast, the second family lacked the third level, and

assumed that agents do not estimate the volatility of the card probabilities or the advice. Thus, com-

paring families with and without volatility tested whether volatility mattered for arbitrated behavior.

Finally, the third family assumed a Bayes-optimal, normative process of learning from the advice and

card outcomes.

In terms of response models, we also considered three families, capturing different ways in which

participants may arbitrate between social and individual sources of information to make decisions.

These included: (i) an ‘Arbitrated’ model, which assumed that participants combine and arbitrate

between the two information sources, possibly unequally, (ii) an ‘Advice only’ model, assuming arbi-

tration-free reliance on social information only, and (iv) a ‘Card only’ model, representing arbitration-

free reliance on the inferred card color probabilities only (Figure 3a).

All models were compared formally using Bayesian model selection (BMS Stephan et al., 2009).

Random effects BMS results in a posterior probability for each model given the participants’ data.

The relative goodness of models is denoted by the ‘protected exceedance probability’ reflecting

how likely it is that a given model has a higher posterior probability than any other model in the set

of models considered (Stephan et al., 2009; Rigoux et al., 2014).

We adopted a similar set of priors over the perceptual model parameters as in our previous stud-

ies (Diaconescu et al., 2014) (see Table 2). Maximum-a-posteriori (MAP) estimates of model param-

eters were obtained using the HGF toolbox version 3.0, freely available as part of the open source

software package TAPAS at http://www.translationalneuromodeling.org/tapas.
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FMRI data analysis
Single-subject level
Our fMRI data analysis focused on the neural mechanisms of arbitration. Specifically, we conducted

two types of analyses on the pre-processed fMRI data:

First, we performed a model-based fMRI analysis, in which we constructed a general linear model

(GLM), which sought to explain the high-pass filtered voxel time-series with several parametric mod-

ulators. The parametric modulators are listed below and were derived from the winning model (i.e.

arbitrated three-level version of the HGF, which had the highest posterior probability at the group

level). The GLMs were individualized, as the regressors were obtained from fitting the model to the

behavioral data of each of the 38 participants. We individualized GLMs because participants differed

in how much they relied on each information source and in the extent to which volatility influenced

their trial-by-trial wagers (Figures 4–5). To investigate the unique contribution of each parametric

modulator, we did not orthogonalize them (see Figure 1—figure supplement 2 for correlations

between them). Moreover, we also included movement and the physiological noise regressors

obtained from the PhysIO toolbox (Kasper et al., 2017) based on ECG and respiration recordings

as regressors of no interest.

In addition to arbitration at the time of advice presentation, we modeled the wager and the out-

come phases to examine the effects of hierarchical precision-weighted PEs, and thus test the validity

of the computational model and the reproducibility of previous findings, see Figure 6—figure sup-

plements 1–2 (Iglesias et al., 2013; Diaconescu et al., 2017). Specifically, the following regressors

were included in the GLM:

1. Social information – time when the advice was presented (regressor duration two seconds);
2. Arbitration – parametric modulator of (1), using the trial-specific arbitration quantity (Equa-

tion 19-20);
3. Social Weighting – parametric modulator of (1), using the precision-weighted prediction of

the advisor fidelity (first term of Equation 21);
4. Non-social Weighting – parametric modulator of (1), using the precision-weighted predic-

tion of the individual card weighting (second term of Equation 21);
5. Wager presentation – time when the option to wager was presented (regressor duration

zero seconds);
6. Wager - parametric modulator of (3), using the trial-specific amount of points wagered;
7. Outcome – time when the winning card color was presented (regressor duration zero

seconds);
8. Advice Precision-weighted PE – parametric modulator of (5), using the trial-specific preci-

sion-weighted PE of advice validity (Equation 8);
9. Outcome Precision-weighted PE – parametric modulator of (5), using the trial-specific preci-

sion-weighted PE arising from comparing actual and predicted card color (Equation 14).
10. Volatility Advisor Precision-weighted PE – parametric modulator of (5), using the trial-spe-

cific precision-weighted PE of advice volatility (Equation 13);
11. Volatility Card Precision-weighted PE – parametric modulator of (5), using the trial-specific

precision-weighted PE of card color volatility (see Equation 15).

We observed no significant correlations between response times (RTs) and any of the parametric

modulators (|r| < 0.3, p>0.05) and therefore did not model RT explicitly. The lack of effects on RTs

may be due to the temporal structure of our task (Figure 1). Specifically, participants responded

long after having received individual information (card outcome in previous trial) and social informa-

tion had fixed duration (video). Therefore, they are likely to have simply conveyed the decision in the

response phase but made it at some time during the video or even before.

Second, we predicted that arbitration should be sensitive to volatility, and favor one or the other

source of information as a function of perceived relative reliability. Based on this hypothesis, we also

performed a non-model based, factorial analysis by dividing the 160 trials into four conditions corre-

sponding to those factors (Figure 10a). This GLM included for each of the four conditions the time

when the advice was presented (the social information phase) and the trial-wise wager amount as a

parametric modulator. We assumed that the difference between the four conditions will be

expressed in the advice phase, before participants make their predictions.
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Group level
Contrast images from the 38 participants entered a random effects group analysis (Penny and

Holmes, 2007). We used F-tests to identify undirected arbitration signals. Moreover, one-sample

t-tests to investigate directed social or individual arbitration signals and positive or negative BOLD

responses for each of the computational trajectories of interest described above.

Participant gender and age were included as covariates of no interest at the group level (the find-

ings remained the same without these covariates). To investigate individual variability in the repre-

sentation of social arbitration as a function of reliance on advice, we used parameter z to perform a

median split of the group of participants.

For all analyses, we report results that survived whole-brain family-wise error (FWE) correction at

the cluster level at p<0.05, under a cluster-defining threshold of p<0.001 at the voxel level using

Gaussian random field theory (Worsley et al., 1996). Given recent debate regarding the vulnerabil-

ities of cluster-level FWE procedures (Eklund et al., 2016), it is worth emphasising that this cluster-

defining threshold ensures adequate control of cluster-level FWE rates in SPM (Flandin and Friston,

2016). The coordinates of all brain regions were expressed in Montreal Neurological Institute (MNI)

space.

Based on recent results that precisions at different levels of a computational hierarchy may be

encoded by distinct neuromodulatory systems (Payzan-LeNestour et al., 2013;

Schwartenbeck et al., 2015), we also performed ROI analyses based on anatomical masks. We

included (i) the dopaminergic midbrain nuclei substantia nigra (SN) and ventral tegmental area (VTA)

using an anatomical atlas based on magnetization transfer weighted structural MR images

(Bunzeck and Düzel, 2006), (ii) the cholinergic nuclei in the basal forebrain and the tegmentum of

the brainstem using the anatomical toolbox in SPM12 with anatomical landmarks from the literature

(Naidich and Duvernoy, 2009) and (iii) the noradrenergic locus coeruleus based on a probabilistic

map (Keren et al., 2009) (see Figure 8—figure supplement 1 for this neuromodulatory ROI).

Code availability
The routines for all analyses are available as Matlab code: https://github.com/andreeadiaconescu/

arbitration (Kasper and Diaconescu, 2020; copy archived at https://github.com/elifesciences-publi-

cations/arbitration). The instructions for running the code in order to reproduce the results can be

found in the ReadMe file.
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