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Abstract
Choosing actions that result in advantageous outcomes is a fundamental function of nervous systems. All computational
decision-making models contain a mechanism that controls the variability of (or confidence in) action selection, but its
neural implementation is unclear—especially in humans. We investigated this mechanism using two influential
decision-making frameworks: active inference (AI) and reinforcement learning (RL). In AI, the precision (inverse variance) of
beliefs about policies controls action selection variability—similar to decision ‘noise’ parameters in RL—and is thought to
be encoded by striatal dopamine signaling. We tested this hypothesis by administering a ‘go/no-go’ task to 75 healthy
participants, and measuring striatal dopamine 2/3 receptor (D2/3R) availability in a subset (n = 25) using [11C]-(+)-PHNO
positron emission tomography. In behavioral model comparison, RL performed best across the whole group but AI
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performed best in participants performing above chance levels. Limbic striatal D2/3R availability had linear relationships
with AI policy precision (P = 0.029) as well as with RL irreducible decision ‘noise’ (P = 0.020), and this relationship with D2/3R
availability was confirmed with a ‘decision stochasticity’ factor that aggregated across both models (P = 0.0006). These
findings are consistent with occupancy of inhibitory striatal D2/3Rs decreasing the variability of action selection in humans.

Key words: active inference, action selection, decision temperature, dopamine 2/3 receptors, go no-go task, reinforcement
learning

Introduction
To optimize behavior, the brain must choose actions that are
expected to result in preferred outcomes. Active inference (AI)
and reinforcement learning (RL) propose distinct computational
mechanisms underpinning this fundamental ability, and assign
differing roles to mesolimbic dopamine signaling. Common to
both models is a mechanism controlling decision stochasticity,
that is, variability in action selection. However, the neurobio-
logical implementation of this mechanism is not well under-
stood, especially in humans. Evidence in animal studies indi-
cates that dopamine, acting at striatal dopamine 2 receptors in
particular, modulates decision stochasticity, although numerous
contradictory findings about the direction of this effect exist
(see Discussion) (Cagniard et al. 2006; Beeler et al. 2010; Pesek–
Cotton et al. 2011; Wunderlich et al. 2012; Stopper et al. 2013;
Eisenegger et al. 2014; Kwak et al. 2014; Costa et al. 2015; Lee
et al. 2015). One functional magnetic resonance imaging (fMRI)
study in humans reported that a dynamically changing decision
stochasticity variable correlated with activation in the midbrain,
which contains dopamine neurons (Schwartenbeck et al. 2015);
however, fMRI cannot measure dopamine directly.

In this study, we used both the AI and RL computational
decision-making frameworks to illuminate the contribution of
striatal dopamine 2/3 receptors (D2/3Rs) to decision stochasticity
and action biases, using in vivo neuroimaging with positron
emission tomography (PET). However, PET measurement of
receptor availability occurs over 30–60 min (Egerton et al.
2010), and so cannot be used to assess dopamine activity on
a timescale of single trials. Here, we use it to index dopamine
D2/3R availability, which can be used as an indirect measure
of tonic dopamine levels (Caravaggio et al. 2016). We used
two modeling frameworks primarily to check our findings
were robust—that is, to assess whether dopamine receptor
availability correlated with parameters governing decision
stochasticity in both frameworks. A secondary aim was to
compare the frameworks’ performance in modeling empirical
choices, as this has not been done before. We first briefly explain
and compare the two frameworks; specifically, how they solve
the computational problem of optimizing action selection to
obtain reward and avoid punishment. We then examine the
respective roles proposed by AI and RL for dopamine signaling
in these models (for details of the models, see Methods).

A Comparison of Reinforcement Learning and Active
Inference

RL and AI both provide accounts of how the brain approximates
Bayesian reasoning (i.e., the optimal use of all available informa-
tion), yet the algorithmic solutions each postulates are different.
RL proposes that agents perform actions to maximize expected
cumulative future reward. Standard ‘model-free’ RL algorithms
(e.g., Rescorla–Wagner, as used here) propose that agents achieve
this by learning state-action values during direct trial-and-error

experience of reward prediction errors (Sutton and Barto 1998),
and then using those values to guide action selection. More
sophisticated ‘model-based’ RL algorithms (Daw et al. 2005, 2011)
use additional information about the transition structure of the
environment to infer the current state (and its uncertainty) and
to plan future actions; some also incorporate uncertainty about
action outcomes themselves (Daw et al. 2006).

In contrast, AI is a fully Bayesian scheme that assumes
both perception and action obey the same principle: the mini-
mization of surprise (i.e., prediction errors). Thus, AI models of
decision-making (formally, Markov Decision Processes – MDPs;
Friston et al. 2013) combine inference about states of the world
together with action planning and selection (which are usu-
ally treated separately in RL) into a single model (Fig. S1A).
Rather than maximizing long-term reward, an agent is endowed
with prior preferences, termed ‘beliefs,’ about its goal states
(e.g., that it will be fed, hydrated, warm, etc). It then samples
actions that minimize the difference between predicted and
preferred outcomes. The quintessential distinction between AI
and model-free RL rests upon the difference between inference
and learning. Thus, an AI agent infers the current context given
a cue (e.g., ‘this banana is sweet because it is yellow’) and then
infers what it is going to do to fulfill prior preferences (e.g., ‘I am
very likely to eat this banana, because I prefer sweet things’).
In contrast, a model-free RL agent might choose to eat the
banana because eating yellow bananas has been rewarding in
the past.

In this regard—and in the simple task employed in the
present study—AI is similar to ‘planning as inference’ algo-
rithms (Attias 2003; Botvinick and Toussaint 2012; Gershman
2019), which infer actions from a joint distribution of actions,
states, and rewards, given an agent’s expectation that it will
maximize reward (or in AI terms, the similarity to its goal
states). One difference is that although ‘planning as inference’
(and model-based RL) algorithms update their confidence about
current states, they do not generally update their confidence
about action selection: AI does both, enabling optimal, risk-
sensitive behavior.

To investigate the computational nature and neural imple-
mentation of choice stochasticity, we used the ‘orthogonalized
go/no-go’ task (Guitart-Masip et al. 2012) and compared AI with
Rescorla–Wagner models, the best established RL accounts of
this task. In this task, participants must learn whether to make
(go) or withhold (no-go) a button press in response to four visual
stimuli (defining unique ‘contexts’; Fig. 1A), in order to either
win money (positive valence contexts) or avoid losing money
(negative valence contexts). Crucially, this task decorrelates the
optimal action from the valence of the context, and can thus
demonstrate the (here sometimes suboptimal) tendency to go
(rather than no-go) to obtain reward, and no-go (rather than go)
to avoid punishment—known as ‘Pavlovian biases.’ Rescorla–
Wagner RL models that include Pavlovian bias parameters can
explain such behavioral biases well (Guitart-Masip et al. 2012,
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Figure 1. The go no-go task and the corticostriatal circuitry it explores (A). A schematic illustrating the go no-go task. The participant sees one of four fractal images
for 1000 ms, followed by a fixation cross for 250–2000 ms, then a circle during which he/she must make (or not make) a button press response within 800 ms, followed

by another fixation cross for 1000 ms, and then the outcome (loss, no-change, or win). See the text for details. (B) Corticostriatal circuitry and dopamine receptors.
Excitatory connections are red arrows, and inhibitory connections are blue arrows. Modulatory (dopaminergic) connections end in balls: this can be excitatory (via
D1Rs) or inhibitory (via D2Rs). The short connections leading back from the striatum to the dopaminergic pathways depict autoreceptor (D2R) effects. The direct
pathway is excitatory overall, the indirect pathway inhibitory. Dopamine excites the former and inhibits the latter, thus increasing activity in both pathways. D1Rs

are less sensitive to small dopamine concentrations than D2Rs, meaning that phasic bursts are best detected by D1Rs, and dips in tonic firing by D2Rs (Dreyer
et al. 2010). An influential RL model of striatal function (Schultz et al. 1997; Frank et al. 2004) proposed that positive reward prediction errors are signaled by phasic
bursting of dopamine neurons, activating D1Rs and increasing synaptic plasticity in the direct pathway, thus increasing the probability that the recent action would

be repeated (‘go learning’); whereas negative reward prediction errors would be signaled by dips in tonic dopamine activity, lowering D2R inhibition of the inhibitory
indirect pathway and thus decreasing the probability the recent action would be repeated (‘no-go learning’). In addition, the interactions between GPe and STN in the
indirect pathway may serve to increase stochasticity (Sridharan et al. 2006), that is, vary the dominant pathway, aided by the extensive lateral competition within the
pathways parallel circuits (Keeler et al. 2014; Burke et al. 2017).

2014; Cavanagh et al. 2013; Chowdhury et al. 2013; Swart et al.
2017). However, several open questions remain, including:

(i) how best to model (apparent) randomness in choice behav-
ior (and its relation to dopamine);

(ii) how the Pavlovian biases described above emerge (also see
Moutoussis et al. 2018; de Boer et al. 2019); and

(iii) whether and how participants deploy knowledge about the
task structure to optimize behavior.

Rescorla–Wagner and AI offer different answers to these
questions; hence, a direct comparison of the frameworks is
useful (Fig. 2).

(i) Randomness in choice behavior: In the AI scheme imple-
mented here (Figs S1 and S2), the ‘precision over policies’
(γ ) controls how confidently an agent selects the most prob-
able policy (action). As this is a Bayesian model, the agent
has a prior over this precision (α) which is updated—that
is, optimized—in light of its experience. In RL, choice vari-
ability is governed by the ‘inverse temperature’ parameter

of a softmax response function, or equivalently—as in the
Rescorla–Wagner models implemented here (Figs 2A and
S1C)—by an ‘outcome sensitivity’ parameter (ρ), and also
an ‘irreducible noise’ parameter (ξ ) that allows actions to
be taken even when their values are exceptionally low (e.g.,
due to attentional lapses). Crucially, in AI, γ is optimized as
the agent becomes more confident about what it should do
in a given context; whereas in RL, the ρ and ξ parameters
are typically fixed throughout.

(ii) Pavlovian biases: In Rescorla–Wagner RL models of this
task, response biases emerge from parameters that drive
valence-dependent biases in action selection or learning.
Specifically, the ‘Pavlovian bias’ parameter, π , promotes go
and no-go actions in positively and negatively valanced
states, respectively. In the AI model, by contrast, we
encoded these biases as prior beliefs about contingency;
for example, that if the context is one of opportunity (i.e.,
reward), the best action is go: p

(
a∗ = go|context = W

)
. If

such biases are beliefs, rather than fixed action-selection
biases, they may be easier to overcome within the task and
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Figure 2. Action selection in RL, and how the RL parameters relate to those of AI.
(A) This illustrates the effects of some RL parameters on action choices, but NB

this is not how ρ was implemented in the model itself. The point is that the effect
of ρ on decision making is mathematically identical to that of a softmax inverse
temperature parameter, which scales the gradient of this plot, and hence how
deterministically differences in action weights translate into actions. ξ scales the

distance of the asymptote from 1 or 0, that is, a consistent level of stochasticity
no matter how great the difference between action weights. The role of γ in the
AI model is most similar to that of ρ here, except that it is updated on every

trial, so as confidence increases, actions become more deterministic. (B) The
parameters are listed for AI and the most complex RL model. The parameters
are separated into three broad groups across both models: those pertaining to
stochasticity, biases, and the speed of belief changes (respectively).

may be updated upon repeating the task (Moutoussis et al.
2018).

(iii) Knowledge about task structure: In AI models, updates
to beliefs about the context to which the visual stim-
ulus belongs are Bayes optimal; that is, proportional to
uncertainty. In this simple task, this is similar to what a
‘model-based’ or ‘planning as inference’ RL agent would do.
However, the AI scheme used here also assumes that beliefs
about recent states are stored in working memory, and
are thus vulnerable to decay back toward their initial (i.e.,
prior) values. This decay depends on how many trials elapse
before the same stimulus is encountered again; weighted
by a ‘forgetting’ parameter, f . In contrast, in the Rescorla–
Wagner RL models used here, the size of value-updates is
determined by a fixed ‘learning rate’ parameter, ε, which is
insensitive to uncertainty. One RL model also incorporates
the forgetting of action values, due to a decay parameter δ.
See Figure 2B for a comparison of the parameters from both
models.

The Role of Dopaminergic Signaling in Reinforcement
Learning and Active Inference

AI and RL postulate differing computational roles for striatal
dopaminergic signaling. The process theory behind AI proposes
that mesostriatal dopaminergic projections encode precision

over policies; in particular, that tonic dopamine activity encodes
a “prior on policy precision parameter,” α, while phasic firing
reflects updates to this prior to form a posterior policy precision,
γ (Friston et al. 2013; FitzGerald et al. 2015; Schwartenbeck
et al. 2015). In contrast, influential RL theories propose that tonic
dopamine activity encodes the expected average rate of reward
(Niv et al. 2007)—and thus affects response vigor, rather than
choice stochasticity—while phasic firing encodes a temporal
difference reward prediction error (Schultz et al. 1997) (although
see Sharpe and Schoenbaum 2018).

To test dopamine’s relationship to choice stochasticity, in
a subset of our sample, we used the D2/3R agonist PET ligand
[11C]-(+)-4-propyl-9-hydroxynaphthoxazine ([11C]-(+)-PHNO) to
measure striatal D2/3R availability (BPND), and investigated the
relationship between this dopaminergic measure and the rele-
vant parameters from both models.

For the AI model, we hypothesized that tonic striatal
dopamine, which activates D2/3Rs (Dreyer et al. 2010), encodes
an agent’s prior on precision over policies, α. As [11C]-(+)-PHNO
competes with endogenous dopamine to bind to D2/3Rs, its
BPND is negatively related to synaptic dopamine concentration
(Caravaggio et al. 2016). Therefore, we predicted a negative
correlation between BPND and the prior on policy precision
parameter, α. Given that in RL the reward and punishment
sensitivity and irreducible noise parameters, ρwin, ρloss, and
ξ , determine choice randomness, we also predicted negative
relationships between BPND and ρwin, ρloss and the irreducible
noise parameter, ξ . However, these relationships might also
contain a quadratic element (as seen in prior studies examining
the relationship between both no-go and reversal learning and
D2/3R availability as measured by PET; Groman et al. 2011; Cox
et al. 2015)—see the Discussion for more on this point.

Study Aims

We addressed two key questions:

(i) Is there evidence that one or more parameters governing
variability in action selection (the prior on policy precision,
α (in AI), or ρ and ξ parameters (in RL)) are encoded by
transmission at striatal D2/3Rs?

(ii) Does either AI or any previously employed Rescorla–Wagner
RL model better explain the behavior of healthy participants
on an orthogonalized go/no-go task?

Methods and Materials
Participants

The study was approved by the local NHS Research Ethics Com-
mittee (Ref. 15/LO/0011) and the Administration of Radioactive
Substances Advisory Committee (Ref. 630/3764/32523), and was
conducted at Imanova Centre for Imaging Sciences, London
and the Institute of Cognitive Neuroscience, UCL. 75 healthy
volunteers (mean age 26.8 years [std 7.5], 40 male) with no
history of neurological or psychiatric illness were recruited from
the ICN participant database and underwent behavioral testing
in the ICN. Questionnaire measures of IQ (the Wechsler Test
of Adult Reading, WTAR; Wechsler 2001) and working memory
(Digit Span) were also administered to all participants: mean IQ
was 106.3 [std 8.2], mean Digit Span was 17.0 [std 4.1]. A subset
of 26 of these participants (mean age 27.5 years [std 8.5], 10
male) also had [11C]-(+)-PHNO PET imaging at Imanova within
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up to 15 days (mean 6.0 days [std 5.5]) of behavioral testing. One
PET participant had to terminate their scan due to nausea. All
participants provided written informed consent.

Behavioral Task and Behavioral Analysis

The task (Fig. 1A) was the learning version of the orthogonalized
go no-go task (Guitart-Masip et al. 2012). In this version, only
36 trials per condition were used instead of 60, due to time
constraints. The participants were instructed that they would
see one of four fractals in each trial, each corresponding to a
different trial type, and that they should respond after seeing
the white circle: the correct response would be either making or
withholding a button press. They were also instructed that they
had to learn through trial and error what response to make, and
that in some conditions they could win 10 pence (green upward
arrow) or get nothing (yellow bar), and in others they could lose
10 pence (red downward arrow) or get nothing (yellow bar). They
were also informed about the probabilistic nature of the task,
that is, that correct responses would result in the best outcome
80% of the time, and that the contingencies would not change
during the task. Prior to the learning task they performed a
practice session, to familiarize them with timing requirements:
they had to respond within 800 ms, if they were to do so; and
between 500 and 800 ms, responses were counted as go but
participants saw “your response was too slow” on the screen.
During the task, the trial types were randomly permuted, and
for each participant the fractals were randomly allocated to the
conditions. Participants were paid their total winnings (if above
zero) along with a standard participation fee at the end of the
experiment.

We devised some simple behavioral measures—‘normalized
switches’ and ‘trials to decision point’ that we hypothesized
would differ between participants who were better fit by AI or by
RL. ‘Normalized switches’ was simply the mean proportion of all
trials (across contexts) when subjects changed their responses.
The ‘decision point’ was defined as the point that maximized a
participant’s response ‘consistency’ if it was assumed she made
her final decision about the context after that trial (Equation 1).
If several trials fulfilled this criterion, the earliest was chosen.
Here, ‘consistency’ was the extent to which participants chose
sequences of identical responses—irrespective of being correct
or incorrect—allowing for the possibility that they might change
their minds up to once.

Actions, a ∈ [−1, 1]
Consistency, con = ∣∣∑ (

a1, . . . , ad
)∣∣ + ∣∣∑ (

ad+1, . . . , a36
)∣∣

Decision point, d = arg max (con)
d∈[1,...,36]

(1)

Thus, participants choosing [–1 –1 –1 –1 –1 –1 –1 –1] and
[1 1 1 –1 –1 –1 –1 –1] are both maximally consistent (1), whereas
[1 –1 –1 1 1 1 –1 1] is more inconsistent. Decision points would
be trials 0, 3, and 3 in these examples. Mediation analyses of the
relationships between consistency or trials to decision point and
model evidence were performed using the Variational Bayesian
Analysis toolbox (Daunizeau et al. 2014).

Computational Modeling – Reinforcement Learning

Reinforcement Learning Models
The RL models were based on those used previously (Guitart–
Masip et al. 2012; Cavanagh et al. 2013). These models compute
the probability of taking an action a at time t given one is in

state s as a function of the weight the model has assigned
to taking that action in that state W (at|st) versus any other
action

∑
a′ W (a′t|st). This was done by subjecting the action

weights to a compressed softmax function (Sutton and Barto
1998), which includes ‘irreducible noise’ ξ (Equation 2)—that is,
a certain level of stochasticity in decision-making no matter
how good one action seems compared with the others. There
is no inverse temperature parameter—instead, the model uses a
reward/punishment sensitivity parameter ρ (Equation 3), which
is functionally identical:

p(at |st ) = ξ

⎡
⎢⎣ exp (W (at |st ))∑

d
exp (W (a′ |st ))

⎤
⎥⎦ + 1 − ξ

2
(2)

Computation of the action weights differed between the dif-
ferent RL models (all listed in Fig. 3). The simplest models (1 and
2) used standard Rescorla–Wagner equations to update the Q
values of actions in states, with reward/punishment sensitivity
ρ and learning rate ε:

Qt (at, st) = Qt−1 (at, st) + ε (ρrt − Qt−1 (at, st)) . (3)

The more sophisticated RL models added in extra parame-
ters. Model 3 introduced a bias term b (Equation 4) that increased
the weight for go actions:

a = go :
Wt (a, s) = Qt (a, s) + b
a = no-go :
Wt (a, s) = Qt (a, s)

(4)

Model 4 introduced a Pavlovian bias parameter π (Equation
5) that increased the probability of a go action if the value of the
current state was positive and decreased it if it was negative,
thus making ‘go to win’ and ‘no-go to avoid loss’ more likely.
This value was computed using Rescorla–Wagner updating:

a = go :
Wt (a, s) = Qt (a, s) + b + πVt(s)
a = no-go :
Wt (a, s) = Qt (a, s)

(5)

Vt (st) = Vt−1 (st) + ε (ρrt − Vt−1 (st)) (6)

Models 5 and 6 equipped Models 3 and 4 with separate
sensitivities to reward and punishment, that is, ρwin and ρloss

respectively, via Equation 6. These parameters play an identi-
cal role to a softmax decision inverse temperature parameter
(illustrated schematically in Fig. 2A). Model 7 used a ‘constant’
Pavlovian bias πc, which—instead of being multiplied by the
value of the state—was simply multiplied by a value of 1 (for
rewards) or –1 (for punishments), from the first time the par-
ticipant encountered one of these in that state. In other words,
πc = π · sgn (V(s)). Model 7 is written out in full in Figure S1C.

Finally, Model 8 incorporated an additional ‘forgetting’
parameter. This was to discover whether adding this mechanism
to the hitherto best-performing RL model could make it perform
similarly to the AI model, which also contained a forgetting
process. The forgetting parameter was decay rate δ: on each
trial, the Q values of all unchosen actions depreciated toward
zero by this constant factor (as in de Boer et al. 2017).

Model Fitting
Model parameters were estimated by transforming parameters
so that they could, in transformed space, be described by normal
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Figure 3. Performance and model comparison across all participants (n = 75). (A) The probability of making a correct response in each condition across all participants

and trials. Participants do best in the ‘Pavlovian’ conditions, go to win and no-go to avoid loss. Error bars depict the standard error of the mean. (B) Model comparison
across all participants using the integrated BIC (see text). Model 7 is the best model; AI is fifth. The RL model parameters shown here included: reward and loss
sensitivities ρwin and ρloss, learning rate ε, irreducible noise ξ , go bias b, different forms of Pavlovian bias (see Methods), π and πc, and decay rate δ. The AI model
parameters are listed in Table 1 and Figure 2B. (C) These plots compare the actual probability of participants’ go responses (group averaged data) with model predictions

in each condition. The probability of go responses is plotted in black. To create the model predictions, each model simulated responses using each participant’s
estimated parameters 20 times, that is, 1500 times in total. The responses were then averaged and plotted in red (RL – Model 7) and blue (AI – Model 9) lines. 95%
confidence intervals for the means of the simulations (shaded areas) were derived from the distributions of means of 100 samples of n = 75 participants.

distributions and then using expectation-maximization as pre-
viously described (Huys et al. 2011; Guitart-Masip et al. 2012).

Model Comparison
Models were compared using the integrated Bayesian Infor-
mation Criterion (iBIC), as used previously (Huys et al. 2011;
Guitart-Masip et al. 2012). In the case of the AI model, the model-
fitting procedure calculated both the free-energy approximation
to the log model evidence F and the iBIC. As might be expected
by the fact that both are estimates of the model evidence, the
two were very closely correlated (r = 0.994, P = 10−70).

The iBIC approximates the log model evidence ln p
(
y|m)

not
by using the log likelihood (under the maximum-likelihood
parameter estimates) for each individual, as in the standard BIC,
but by weighting the likelihood by the posterior probability that
the corresponding parameters obtain, given the ML estimate
of the group parameters θ̂ml. This integral is approximated by
sampling from the posterior distributions over the parameters h
a total of N = 2000 times per participant for i participants:

1n p(y|�θml
) =

∑
i

1n
∫

p(yi|h)p(h|�θml
)dh

�
∑

i

1n
i
N

N∑
n=1

p(yi|hn) (7)

The iBIC can then be computed (Equation 8). Smaller iBIC
values indicate a better model: comparing iBIC values is akin
with a Bayes Factor.

1n p
(
y |m ) = 1n

∫
p
(
y |θ )

p(θ |m ) dθ

� iBIC = −2 1n p
(
y

∣∣∣�θml
)

+ |θ | 1n |s| (8)

We also computed the mean pseudo R2 (Camerer and Ho
1999) across participants as a measure of the degree to which
a given model performs better than chance (0 (or below) is at
chance (or worse), and 1 is perfect). For t trials, each having
a probability of 0.5 of being correctly predicted by chance, the
pseudo R2 is:

pseudoR2 =
∣∣∣∣∣∣
1n p

(
y

∣∣∣�θml
)

+ 1n
(
0.5t

)

1n
(
0.5t

)
∣∣∣∣∣∣ (9)

Computational Modeling – Active Inference

AI agents infer behavior using MDPs (Fig. S1A) with action-
dependent state transitions. In an MDP, different states of the
world can (probabilistically) lead to different outcomes (e.g.,
rewards), and an agent’s actions affect transitions from one
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state to others. The agent must infer both (i) what state it is in,
given what it has done and observed so far (this is a partially
observable MDP, or POMDP), and (ii) the best actions to take
(or ‘policies’) given its current state and its prior preferences
(Friston et al. 2013). The ‘best’ actions lead to (preferred) states
or outcomes that have high a priori probability; see, planning as
inference (Attias 2003; Botvinick and Toussaint 2012).

Essentially, the model (Fig. S1A) considers the observations
initial, lose, null and win – o = {

init, −1, 0, 1
}

– in series õ =
{o0, . . . , oT}. These depend solely upon hidden states s̃. Tran-
sitions between the hidden states are determined by control
states u = {Go, NoGo}, sequences of which constitute policies
. Actions are sampled from posterior beliefs over policies, and
these beliefs have a precision γ . We now describe each of these
variables in more detail, but please see Friston et al. (2013) for a
comprehensive description of the model:

Prior Beliefs About States and Preferences
In the go no-go task, each visual stimulus belongs to one of four
‘contexts’ (go to win, go to avoid loss, no-go to win, no-go to
avoid loss; Fig. 1A), which do not change. For each of the four
contexts, we consider four states: an initial state upon seeing
the stimulus, and three outcomes—lose, no-change and win:
{s} = [initial, lose, null, win] × [G2W, G2AL, NG2W, NG2AL]. This
means there are 16 possible states; although in the task itself,
only 12 are used—one initial state and two action-dependent
outcomes for each of the four contexts (associated with each
fractal cue).

Given the current stimulus, the agent infers which context it
is currently in terms of a distribution over contexts D(ctxt).
At the start of the task, this belief distribution D(ctxtt=0) is
determined by the agent’s prior beliefs about the relative
frequency of the four contexts—that are updated with repeated
exposure to each stimulus. These beliefs are the following
‘Pavlovian’ priors P0: the probability a context is one in
which winning money is possible, the probability the best
action is go given money can be won, and the probability
the best action is no-go in a context where one must avoid
loss: P0 = {p(context = W) , p

(
a∗ = go|context = W

)
, p(a∗ =

no go|context = AL)}. (These priors are Pavlovian in the sense
that the relative frequency of the contexts determines how likely
an agent is to assume go is the correct action in a win context,
etc). An example set of priors and the resulting D(ctxtt=0) is
shown in Figure S2A.

The agent also has prior beliefs about outcomes, or prefer-
ences. We model agents’ preferences with a softmax function of
objective returns r at the outcome time σ (r (sT); cτ ). The (inverse)
temperature parameter cτ —termed the precision of prior pref-
erences—describes how sensitive agents are to differences in
returns (also see Fig. S2B). Thus:

p(sT |m ) ∞σ(r (sT); cτ ) (10)

This describes a probability distribution over states sT at
time T (given the model m), which depends upon the returns
associated with each state. We also hypothesized that outcome
desirability is influenced by beliefs about the prevalence of the
context in which it is obtained (in developing the model, this
considerably improved the quality of model fits: unpublished
data). Thus, agents’ beliefs temper their desires before they
consider the difference their policies may make in attaining
them. In this case, the agent’s prior preferences c are the product
of the distribution over contexts and the subjective preferences

for the states in those contexts (an example is illustrated in
Fig. S2B):

c := p(sT |m ) = D(ctxtt=0) σ (r (sT); cτ ) (11)

States and Transitions
Transition matrices B

{
go

}
and B

{
nogo

}
represent the depen-

dence of state transitions on policies or control states ũ: they
contain the probabilities p(st+1|st, π) (Fig. S2C). They map ‘from’
states (listed in columns) ‘to’ states (listed in rows), given a
policy, so for matrix B

{
go

}
, entry Bij is the probability of transi-

tioning from state j (here, the initial state) to state i (e.g., winning)
if the go action is performed (i.e., P = 0.8 for the G2W condition).
Here, we consider policies operating upon the states of a single
trial (rather than a whole set of trials). As stimuli belong to fixed
contexts, B is block-diagonal. Within each block, the initial state
leads to the optimal outcome with probability 0.8, and to the
suboptimal outcome with probability 0.2. Actions have no effect
on ‘outcome states’ (win, lose, or no-change in all contexts),
which hence map trivially onto themselves (Fig. S2C).

The task is conceptualized as a chain of single trials, or mini-
games, for each stimulus, as follows:

1. Within the chain for each particular stimulus, the posterior
probability about the context to which the stimulus belongs
(i.e., the belief distribution over states) becomes the prior
probability of the next trial in the same chain. Recently
acquired evidence is subject to forgetting, however:

2. The chains affect each other only in that new information
about each stimulus has to be kept in working memory while
other, intervening trials involving different stimuli occur.
The number of these intervening trials is ngap − 1 (i.e., for
consecutive trials in a chain, ngap is 1), and the index of each
trial in a chain is t. The forgetting parameter f quantifies how
leaky working memory is. We write:

D(ctxtt) = D
(
ctxtt−ngap

) (
1 − fngap

)

+ D(ctxtt=0)
(
1 − (

1 − f
)ngap

)
(12)

D(ctxtt=0) is determined by the (Pavlovian) prior beliefs over
the contexts (see above). Thus, over time, a participant’s beliefs
about the prevalence of the contexts given the previous outcome
in that context decays away from D

(
ctxtt−ngap

)
and back toward

D(ctxtt=0) until that context is revisited, ngap trials later (illus-
trated with respect to getting a reward in the state NG2W in
Fig. S2D). Once the agent returns to that context, its (decayed)
beliefs given the previous outcome D(ctxtt) are incorporated into
its ‘stored’ posterior beliefs about the context, which do not
decay.

Note that in this task, B is formulated, so that the mapping
from states to outcomes p

(
õ|s̃, m

)
—normally contained in the A

(likelihood) matrix—is deterministic, so no A matrix is required.
This simplifies the model but is formally equivalent to the
typical partially observable MDP notation incorporating both B
and A. The key point is that AI assumes that subjects use the
information in the task instructions to construct a state space
that they can use to do inference. This assumption determines
the state space we use here.

Policy Choice
Assume that an agent believes that at time t they occupy a state
st. They then need to choose a policy π comprising a sequence
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of control states ũ = {u0, . . . , uT} that leads to a desired outcome
distribution p(sT|m), abbreviated to c (Fig. S2B). Here, there is
only one meaningful action; that is, no sequence, so ũ is just
go or no-go (we therefore use π instead of ũ throughout for
reasons of clarity). If π leads to a distribution over final or out-
come states p(sT|st, π)—in this one timestep task, equivalent to
B—then success can be measured by the Kullback–Leibler diver-
gence (in basic terms, the difference) between the anticipated
and desired distributions, abbreviated to Q. The agent can then
choose policies according to this measure of their likely success.
We can express this formally as follows (Friston et al. 2013):

Q := −DKL
[
p(sT |st, π )

∥∥p(sT |m )
]

Qij = B
{
π = i

}
j1n c − B

{
π = i

}
j1n B

{
π = i

}
j (13)

1n p
(
π = i

∣∣st = j, γ , Q
) = Qij · γ − 1n Zπ

Line 2 shows how Q is computed for policy i and state j. For
the policy go in the G2W state and using B

{
go

}
and c illustrated

in Figure S2, this is: 0.8 · ln(0.31) − 0.8 · ln(0.8) = −0.76, and for
no-go in this state, this is: 0.8 · ln(0.003) − 0.8 · ln(0.8) = −4.47
(the best policies have the minimal difference between p(sT|st, π)

and p(sT|m), that is, Q which is negative but as close to 0 as
possible). Thus, Q is an i × j matrix containing the KL divergence
measures of the quality of i allowable policies from j states. The
agent’s policy is then sampled from Q according to p

(
π = i

)
and

p
(
st = j

)
. Note that this special (simple) case of AI reduces to a

Bayes optimal state-action policy, under some prior preferences
encoded by c.

Line 3 introduces a normalizing constant Zπ and a precision
parameter γ . This encodes the confidence that desired goals can
be reached, and it is inferred anew from trial to trial (Equation
14 and Figs S1, S2), based on current inferences about states, the
quality of available policies and a parameter α quantifying the
prior beliefs about confidence that participants have:

�γ = α

β − �πt · Q · �st
(14)

where α is the shape parameter in a gamma-shaped prior of
rate=1, that is, here is fixed to 1, so as the agent nears its
goals, Q → 0 and thus γ → α. γ therefore plays the role of
a dynamically varying inverse temperature parameter, whose
upper bound is its prior α. We thus fractionate choice variability
into two parts, one parameterized by cτ which does not vary over
time, and γ which the agent must dynamically infer. For some
illustrative simulations of the AI model and the role of α, please
see Figure S3, described in the Supplement.

Free-Energy Minimization by Agents
An agent’s knowledge of how policy, states and observations
interact forms a generative model over these quantities—
including precision. This model is constituted by beliefs about
policies—as specified by equation (13)—state transitions, the
likelihood of a sequence of observations stemming from those
states and prior beliefs about precision:

p
(
õ, s̃, ũ, γ |m) = p

(
õ|s̃, m

)
p
(
s̃|ũ, m

)
p
(
ũ|st, γ , m

)
p(γ |m) (15)

Agents invert this to infer the hidden states of the world s̃ =
{s0, . . . , sT}, to determine where each policy ũ is likely to lead, and
to infer the optimal precision γ or confidence in policy selection.
To do this, they use their observations õ and their model m of
choice-dependent probabilistic state transitions.

Table 1 Prior means and standard deviations for estimation of the
AI model parameters. All were estimated, although the standard
deviation of cτ was so small that it was virtually fixed

Parameter Prior mean
(native space)

Prior std dev
(estimation space)

α 1.627 0.31
p (context = W) 0.5163 0.14
p

(
a∗ = go|context = W

)
0.5211 0.21

p
(
a∗ = no go|context = AL

)
0.5063 0.13

cτ 5.785 0.019
f 0.593 0.48

The variational free energy F of observations and beliefs
under a model approximates the inconsistency of beliefs and
observations: thus minimizing it maximizes the chance of
achieving an agent’s goal beliefs (Friston et al. 2013). Agents can
compute F by approximating the posterior distribution (approx-
imating equation (15)) using a mean field assumption; namely,
that subsets of variables are conditionally independent. Thus,
the parameters describing belief distributions are partitioned
into three common-sense subsets: statistics describing (i) beliefs
about states of the world causing observations s, (ii) beliefs
about the (future) policy π , and (iii) beliefs about precision γ .

These constitute sufficient statistics μ = (
	
S,

	
π ,

	
γ ). With each new

observation, these statistics are updated iteratively in terms of
the sufficient statistics of the other subsets. This approximates
full Bayesian inference, and is known as variational Bayes. The
update equations are shown in Figure S1B, alongside a putative
message passing scheme that could implement these equations
in the brain.

Model Fitting
The parameters (Fig. 2B) were estimated using the Hierarchical
Gaussian Filter toolbox (Mathys et al. 2011), available to down-
load from http://www.translationalneuromodeling.org/tapas/.

Parameters were appropriately transformed, so that Gaus-
sian distributions were used at the group level. Empirical priors
(Table 1) were derived by estimating the parameter distributions
from the empirical data using Empirical Bayes, and iterating a
small number of times until approximate convergence. Initial
conditions for the empirical priors were explored over a coarse
grid, to avoid local optima. The means and variances of the
empirical priors are listed in Table 1. As the Pavlovian prior
beliefs and f are bounded by 0 and 1, they were estimated in
logit space, where logit (x, 1) = ln

(
x/ [1 − x]

)
. Where a has a lower

bound at zero, and so was estimated in log space.
We performed additional analyses to check that the model

parameters could be reliably recovered from simulated datasets:
these are detailed in the supplement and Figure S4A.

PET Image Acquisition and Analysis

PET images were acquired using a Siemens Biograph HiRez XVI
PET scanner (Siemens Healthcare). A low-dose computerized
tomography scan was performed for attenuation and model-
based scatter correction, followed by the injection of a sin-
gle intravenous bolus of 0.020–0.029 micrograms/kg [11C]-(+)-
PHNO. Dynamic emission data were acquired continuously for
90 min after the administration of the radiotracer. The dynamic
images were then reconstructed using a filtered back-projection
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algorithm into 31 frames (8 × 15, 3 × 60, 5 × 120, and 15 × 300 s)
with a 128 matrix, a zoom of 2.6 and a transaxial Gaussian filter
of 5 mm.

PET images were analyzed using MATLAB version 2015b
(Mathworks, Inc.) and MIAKAT (MIAKAT release 4.2.6, www.
miakat.org; Gunn et al. 2016). An automatic pipeline was used
to obtain an individual parcellation of the brain into regions
of interest in MNI space, including the whole striatum and
its functional subdivisions as defined by the Martinez atlas
(Martinez et al. 2003). A 0–10 min [11C]-(+)-PHNO binding tem-
plate was nonlinearly coregistered with the 0–10 min summed
PET image of each participant using Statistical Parametric
Mapping (SPM8 – Wellcome Trust Centre for Neuroimaging).
The template was created from an internal library of [11C]-
(+)-PHNO PET scans in healthy volunteers and normalized by
individual structural MRI into standard space. A frame-by-frame
registration process on a single frame of reference was used for
motion correction for dynamic PET images. Individual averaged
PET images were then coregistered to the 0–10 min summed
PET image using rigid body coregistration. The deformation
parameters from each participant’s 0–10 min [11C]-(+)-PHNO
binding template were applied to the Martinez striatal atlas,
which defines the anatomical extents of the limbic, associative
and sensorimotor striatum in MNI space (Martinez et al. 2003),
bringing the atlas into the individual participant’s space, before
it was resliced to PET resolution. Regional time activity curves
(TACs) were obtained by applying the individual parcellations to
the realigned dynamic images. The whole cerebellum, defined
using a standard cerebellum atlas (Tziortzi et al. 2011), was
used as a reference region due its low density of dopaminergic
receptors (Kumakura and Cumming 2009; Egerton et al. 2010).
Our outcome measure of interest was nondisplaceable binding
of [11C]-(+)-PHNO (BPND):

BPND = fNDBavail

KD
(16)

where Bavail is the proportion of dopamine 2/3 receptors avail-
able to be bound by PHNO (i.e., the fraction of receptors not
bound by endogenous synaptic dopamine), fND the free fraction
of PHNO in the brain, and 1/KD the affinity of ligand for the
target. BPND for the whole and functional striatal subdivisions
was obtained by kinetic modeling with a simplified reference
tissue model (Lammertsma and Hume 1996; Gunn et al. 1997).
Once the individual BPND maps were obtained, they were then
warped back to MNI space using the inverse transformation of
the initial nonlinear coregistration.

We defined the limbic striatal subdivision as our region of
interest as there is a small amount of evidence from animal
studies (Haluk and Floresco 2009; Ding et al. 2014) and human
fMRI (Schwartenbeck et al. 2015) that it might be most important
in controlling policy precision.

Results
Healthy participants (n = 75) completed an orthogonalized
go/no-go task (Guitart-Masip et al. 2012), which required them to
learn whether to either make (go) or withhold (no-go) a response,
in the context of either reward (winning money) or punishment
(losing money) (Fig. 1A). Therefore, there were four different
conditions, represented by four different abstract fractal stimuli:
go to win; no-go to win; go to avoid loss; and no-go to avoid loss.
On 80% of trials, feedback was provided consistent with the
stimuli, while on 20% of trials, the feedback was inconsistent.

About 36 trials were completed in each condition, presented
in a random order. Further details are provided in the SI
Appendix and elsewhere (Moutoussis et al. 2018), together with
an explanation of the construction and comparison of the RL
(Figs 2A and S1C) and AI (Fig. S2) models.

Behavioral Results

The proportions of correct responses over all 75 participants
in each condition (Fig. 3A) were consistent with previous stud-
ies (Guitart-Masip et al. 2012, 2014; Cavanagh et al. 2013). As
expected, a 2 × 2 ANOVA with the factors action (go vs. no-
go) and valence (reward vs. avoid loss) showed that participants
were significantly more accurate on go than no-go trials (main
effect of action: F(1,74) = 12.4, P < 0.001, partial η2 = 0.14),
with no difference between reward and punishment trials (main
effect of valence: F(1,74) = 0.2, P = 0.6). There was a significant
action-by-valence interaction (F(1,74) = 35.7, P < 0.0001, partial
η2 = 0.32) characteristic of Pavlovian bias, with participants
responding more accurately in the go to win (relative to go to
avoid loss) and the no-go to avoid loss (relative to no-go to win)
conditions.

We expected performance to approximately stabilize by the
final 20 trials of each condition, based on previous experience
(Moutoussis et al. 2018). The proportions of correct responses
in these final 20 trials are shown in Figure S4B (performance
in the final 10 trials was similar). A few participants performed
substantially below chance in the more difficult conditions (go
to avoid loss and no-go to win), despite performing well in
the easier contexts, indicating that they learned (or inferred)
incorrectly about these contexts specifically, rather than in gen-
eral. Thus, we did not exclude these subjects, as we wanted
to see if the models could capture the full range of individual
variability.

Computational Modeling Results

Comparing models across all 75 participants using the iBIC
(Fig. 3B), the best was Model 7, a Rescorla–Wagner RL model
that contained all parameters except decay rate δ (included
parameters: reward and punishment sensitivities ρwin and ρloss,
learning rate ε, irreducible noise ξ , go bias b, constant Pavlovian
bias πc). The AI model was fifth; it was out-performed by the
four Rescorla–Wagner RL models containing a Pavlovian bias
parameter. The pseudo R2 for Model 7 was 0.270 (substantially
above chance); for AI, it was 0.224.

The averaged responses across all 75 participants in each
condition over time are shown in Figure 3C (black line), along
with simulated responses from the winning RL model (red line)
and AI model (blue line), and their 95% confidence intervals.
When simulating responses, we used each participant’s modal
posterior parameter estimates 20 times (i.e., 1500 simulations
in total). The Rescorla–Wagner model consistently performed
better toward the start of the task, presumably because when
participants are unfamiliar with the context they default to a
go action (which is reflected in the go bias, b). Very similar
results were found in the 25 subjects who also had PET imaging
(Fig. S5).

Conversely, the behavior of participants who accurately
inferred—or learned—the task was better explained by AI.
Across participants, there was a significant positive association
between the difference in model evidence between AI and RL
Model 7 and the proportion of correct choices (r = 0.32, P = 0.005;
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Figure 4. Comparing RL and AI in the participants performing above chance in the last 20 trials (n = 26). (A) The bigger the difference between AI and RL integrated

likelihoods, the more correct responses participants make—that is, better performing participants will always be better fit by AI, whatever performance threshold is
chosen. (B) Model comparison in only the participants who were >50% correct (i.e., above chance) in the final 20 trials in each condition (n = 26)—here, the AI model
wins by a reasonable margin (iBIC of 42). Model 8 is in second place. (C) These plots compare the actual probability of participants’ go responses (averaged across
participants who were >50% correct in the last 20 trials (n = 26)) with model predictions (from Model 8, the winning RL model in this group, and Model 9, AI) in each

condition, in the same format as the previous figure. Each model used each participant’s estimated parameters 58 times, that is 1508 times in total. 95% confidence
intervals for the means of the simulations (shaded areas) were derived from the distributions of means of 100 samples of n = 26 participants. RL tends to fit the start
of the sequences better, but AI better fits the rest of the sequences, because (i) the Pavlovian priors get overridden by the data in the best participants, (ii) participants
can become more deterministic as they accumulate knowledge about the task.

Fig. 4A). Consistent with this, the 26 participants who achieved
>50% correct responses in every condition (i.e., above chance
in all four contexts) across the final 20 trials clearly favored
AI over the next best RL model (Fig. 4B). NB all 36 trials were
used for model inversion in these subjects, not just the final
20. Similar results obtained if other thresholds were chosen, for
example, >60% or >70% correct responses, and/or using the last
10 trials.) Interestingly, the best-fitting RL model in these better-
performing subjects was Model 8, which included a forgetting
process. The pseudo R2 for the AI model in these 26 participants
was 0.334 (for Model 8 it was 0.326).

We also found that a purely data-driven method also picked
out subjects best fit by AI. We grouped participants using k-
means clustering according to accuracy on the last 20 trials
in each condition. This produced four clusters of participants,
with AI best fitting the two largest clusters (Fig. S6): a group of
‘high performers’ (cluster 4: n = 31); and a group who were more
accurate in go than no-go contexts (n = 23).

Thus, AI better accounted for behavior relative to RL as
performance improved. Figure 4C shows the averaged responses
of the 26 most accurate participants and simulated data in the
same format as Figure 3C. Although the Rescorla–Wagner model
fits the initial actions of each context better, the AI model

quickly improves on it in three out of four conditions. Note
that in Figure 4C, we are comparing AI with RL Model 8, but all
subsequent comparisons are with Model 7, the best RL model
overall.

To further understand the difference between the models,
we derived summary behavioral measures of deterministic
responding and of the number of trials before participants
settled on one response—termed ‘normalized switches’ and
‘trials to decision point’ respectively (see Methods). There were
strong correlations between the evidence for (i.e., integrated
likelihood of) AI and all measures (normalized switches: r = 0.88,
P = 10−25; trials to decision: r = –0.71, P = 10-12; Fig. S7A). The
correlations between these measures and RL model likelihood
(normalized switches: r = 0.52, P = 10-6; trials to decision: r = –
0.36, P = 0.002; Fig. S7A) were both significantly weaker (Steiger’s
Z, P = 10-6 and P = 0.00004, respectively).

Mediation analyses revealed that making consistent
responses and deciding early was favored more by AI than RL,
irrespective of whether these responses were actually correct
(Fig. S7B). The degree to which a subject’s model evidence
favored AI over RL Model 7 did not significantly relate to their
digit span (r = 0.25, P = 0.13) or IQ estimated from the WTAR (r =
0.14, P = 0.4), however.
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The importance of consistency for AI model fits can also
be observed in individual participants’ action sequences: even
when performance is matched across participants (Fig. S8A),
AI accounts for participants who are consistent (even if they
are wrong about one or two contexts—for example, participants
45 and 65, Fig. S8B), whereas the RL model better explains
the behavior of people who respond more inconsistently (e.g.,
participants 57 and 62, Fig. S8B).

Given that neither AI nor RL models are perfect, and each
may capture distinct aspects of behavior, we performed a fac-
tor analysis (see Supplementary Methods) on their combined
parameters to see if a ‘choice stochasticity’ factor emerged, in
order to assess its relationship to D2/3R availability. The AI prior
over policy precision, α,α and the RL reward sensitivity param-
eter, ρwin, were strongly associated (r = 0.47, P < 0.00076, i.e.,
Bonferroni corrected for 66 comparisons), and these parameters
loaded strongly on the first factor, along with the RL irreducible
noise parameter, ξ (Fig. S9A and B). The Pavlovian parameters in
both models loaded on the second factor, and RL loss sensitivity,
ρloss, strongly loaded on the third factor.

Finally, the AI forgetting parameter, f , correlated with both
IQ (r = –0.37, P = 0.0015) and Digit Span (r = –0.36, P = 0.0021):
both significant after Bonferroni correction for 12 comparisons
(P < 0.0042). The correlation of f with IQ was not driven by the
best-performing participants; in the participants performing at
or below chance in the last 20 trials (n = 49), whose behavior
was fit best by RL, the correlation was r = –0.30, P = 0.059. The
AI prior on policy precision parameter, α, did not correlate with
either measure (r = 0.09 and 0.21, respectively; both P > 0.05). In
RL Model 7, only go bias, b, correlated with Digit Span (r = 0.28,
P = 0.020)—but not with IQ (r = 0.15, P = 0.2)—and this did not
survive Bonferroni correction.

PET Results

The behavioral performance of the 25 participants in the PET
study was similar to the entire sample: the same 2 × 2 ANOVA
revealed that participants showed a significant action-by-
valence interaction (F(1,24) = 17.0, P < 0.0001). Again, there was
no main effect of valence (F(1,24) = 0.2, P = 0.7), but in this subset
the main effect of action did not reach statistical significance
(F(1,24) = 2.7, P = 0.11). RL Model 6 narrowly beat RL Model 7
(iBICs of 6073 and 6086, respectively), with the AI model in fifth
position, behind all the models with Pavlovian biases. Averaged
responses in each of the four contexts—and simulated data
from each model—also resembled those in the entire group (Fig.
S5).

Considering the RL model, we detected the expected signif-
icant negative linear relationship between limbic striatal D2/3R
availability and ξ (r = –0.46, P = 0.020) but no quadratic relation-
ship (Fig. 5A). Contrary to our predictions, there were no signifi-
cant relationships between limbic striatal D2/3R availability and
ρwin or ρloss.

From the AI model, we detected the expected significant neg-
ative linear relationship between limbic striatal D2/3R availabil-
ity and α (P = 0.029), while the quadratic term narrowly missed
significance (P = 0.068; overall model F(2,22) = 4.4, P = 0.025,
R2(adj) = 0.22; Fig. 5B). The linear relationship was significant
without the quadratic term (r = –0.41, P = 0.043).

Finally, we found that the ‘choice stochasticity’ factor derived
from the factor analysis across parameters from the AI and RL
models – on which α, ρwin and ξ all loaded (with scores of 0.69,
0.88 and 0.30 respectively; Fig. S9B) – had highly significant linear

(P = 0.0006) and quadratic (P = 0.006) relationships with limbic
striatal D2/3R availability (overall F(2,22) = 9.5, P = 0.001, R2(adj) =
0.41; Fig. 5C). Again, the linear relationship was significant with-
out the quadratic term (r = –0.48, P = 0.014). Parameter recovery
analysis (using simulated data – see the supplement) showed
these parameters could be reliably recovered, with correlations
between simulating and estimated parameters of r = 0.81 for α,
r = 0.74 for ρwin, and r = 0.51 for ξ (Fig. S4A). None of the other
factors had significant relationships with limbic striatal D2/3R
availability.

In exploratory analyses, we found that the ‘choice stochas-
ticity’ factor also had significant relationships with D2/3R avail-
ability in the associative striatum and across the striatum as a
whole, but not within the sensorimotor striatum (detailed in the
Supplement). We also found a relationship we had not hypoth-
esized between RL learning rate ε and limbic striatal D2/3R
availability (Fig. S9C), but this was not significant after multiple
comparisons correction. It is detailed in the Supplement. No
other parameters had a relationship with limbic striatal D2/3R
availability.

Discussion
Consistent with our hypothesis, using both RL and AI models of a
challenging go/no-go task we found clear negative relationships
between D2/3R availability in the limbic striatum and choice
stochasticity parameters. These were the RL irreducible noise
parameter (ξ ) and the AI prior precision over policies parameter
(α). Notably, a ‘choice stochasticity’ factor (derived from a factor
analysis of parameters across the models) had highly significant
linear and quadratic relationships with D2/3R availability. This
is consistent with the hypothesis that D2/3R occupancy in
the indirect pathway decreases choice variability (although
D2/3R density also contributes to D2/3R availability). In model
comparison, the Rescorla–Wagner RL model won overall,
but participants’ performance correlated with the degree to
which AI outperformed Rescorla–Wagner in modeling their
behavior. AI especially favored participants who responded
more consistently (i.e., less stochastically) and who decided
more quickly on the appropriate action for the context. Finally,
we also observed positive linear relationships between D2/3R
availability in the limbic striatum and an AI ‘Pavlovian’ prior
belief parameter (p

(
a∗ = go|context = W

)
), as well as the RL

learning rate (ε).

Choice Stochasticity Parameters Negatively Relate to
Limbic Striatal D2/3R Availability

The negative linear relationship between the ‘choice stochastic-
ity’ factor (on which policy precision α, reward sensitivity ρwin

and irreducible noise ξ loaded) and D2/3R availability in the lim-
bic striatum (Fig. 5C) is an important finding. We predicted this
relationship a priori, because in the AI framework, dopamine is
thought to encode the precision over policies (γ ), whose upper
bound is α. We therefore hypothesized that α would be encoded
by tonic striatal dopaminergic activity, which impacts D2/3R
availability. This is consistent with the hypothesis that the indi-
rect pathway promotes switching among policies (see below),
since D2/3R activity inhibits this pathway, making actions more
deterministic (Fig. 5D). Therefore, if D2/3R availability is at least
in part an inverse measure of this tonic activity, there should be
a negative relationship between choice stochasticity and D2/3R
availability. Note, however, that a dopamine-depletion PET study
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Figure 5. Relationships between D2/3R availability and RL and AI parameters governing response stochasticity in participants who completed PET (n = 25). (A) There is

a linear relationship between irreducible decision noise ξ and limbic striatal D2/3R availability (measured as [11C]-(+)-PHNO BPND) in the participants who completed
a PET scan (r = –0.46, 95% CI [–0.72 –0.08], P = 0.020). Here, ξ was logit transformed as it was not normally distributed: logit (ξ) = ln

(
ξ/ [1 − ξ ]

)
. Without the transform,

the correlation remained significant (r = –0.45, 95% CI [–0.72 –0.07], P = 0.023). (B) There is a significant linear relationship between the prior on policy precision α and
D2/3R availability, βlinear = –2.1, SE = 0.91, t22 = –2.33, P =0.029; there is also evidence of a quadratic relationship but it is not significant, βquad = 0.49, SE = 0.26, t22 =

1.92, P = 0.068. (C) This plot shows the relationships between D2/3R availability and the first factor in the factor analysis of the AI and RL parameters (detailed in Fig.
S9). Three parameters governing response stochasticity loaded on this factor (loadings in brackets) – α (0.69), ρwin (0.88), and ξ (0.30)—and this factor has robust linear
(βlinear = –0.29, SE = 0.07, t22 = –3.97, P = 0.0006) and quadratic (βquad = 1.8, SE = 0.06, t22 = 3.06, P =0.006) relationships with D2/3R availability. (D) We interpret the linear
relationships in plots A–C as being due to greater tonic D2R occupancy suppressing the indirect pathway more, hence making participants’ choices more deterministic.

would be required to conclusively establish that the negative
relationship between D2/3R availability and choice stochasticity
is due to tonic activity at these receptors, rather than receptor
density (see below).

It is not surprising that the reward sensitivity parameter,
ρwin, loaded strongly on the choice stochasticity factor, as ρwin

is equivalent to a decision inverse temperature parameter in the
win domain. Consistent with this, it also correlated strongly with
α (r = 0.47). Although ρwin’s relationship with D2/3R availability
was nonlinear and not captured by linear or quadratic regres-
sion, there was a linear relationship between irreducible noise
(ξ ) and D2/3R availability (Fig. 5A).

There was also a quadratic relationship between the choice
stochasticity factor and D2/3R availability, and between α and
D2/3R availability (although the latter narrowly missed statisti-
cal significance – Fig. 5B). The quadratic relationships are not
important for our analyses, but they could arise from individ-
ual differences in either receptor density (as BPND is a func-
tion of both tonic dopamine activity and the total density of
D2/3Rs) or presynaptic D2/3R autoreceptors (Fig. 1B) that decrease
dopamine release (Ford 2014). Previous studies have observed
similar nonlinear relationships between striatal D2/3R availabil-
ity and the ability to change a policy following negative out-
comes (Groman et al. 2011; Cox et al. 2015).
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Model Comparison Favors RL Over AI Overall, But AI in
Accurate Participants

This is the first study to directly compare the performance of
RL and AI models using empirical data (also see FitzGerald et al.
2015). This was not intended to be a comprehensive comparison
(e.g., model-based or ‘planning as inference’ RL models could be
constructed), but one focused on the specific issues of account-
ing for response variability and biases. Nonetheless, instructive
conclusions can be drawn. First, while Rescorla–Wagner RL was
favored over all participants, a higher likelihood of AI relative
to RL was associated with more accurate performance: in par-
ticipants performing above chance in the last 20 trials of each
condition, the AI model was favored. Although only a third
of subjects achieved this performance in every condition, our
sample performed similarly overall to previous samples, given
earlier versions employed more trials and hence got closer to a
performance asymptote.

Additionally, independent of accuracy, greater evidence for
the AI model was associated with more consistent responding
(i.e., less switching), and a lower number of trials to reach a
‘decision point’ (Fig. S7B). This pattern is likely to arise because
the Bayesian AI model can (i) incorporate prior knowledge about
the task structure, (ii) dynamically adjust both the rate at which
it updates its beliefs and the stochasticity with which it chooses
its actions, according to its uncertainty, and (iii) ‘overwrite’
its Pavlovian prior beliefs about the prevalence of contexts. In
contrast, the Rescorla–Wagner RL model uses fixed learning
and decay rates and decision noise and reward/punishment
sensitivity parameters to fit the entire sequence of trials, and
its decision biases (πc, b) are expressed during action selection,
and hence are hard to overcome. That said, the AI model might
benefit from a similar ‘go bias,’ which would likely improve its
fitting of the initial trials, when subjects prefer to explore using
‘go.’ Last, it is possible that some of AI’s superior performance
in the more accurate subjects is due to its ‘forgetting’ process,
given that incorporating forgetting improved RL Model 8s fitting
of these subjects. Nevertheless, AI still outperformed Model 8,
probably due to the Bayesian factors highlighted above.

The degree to which subjects were favored by AI or Rescorla–
Wagner RL models did not relate to their age, digit span or
estimated IQ. Nevertheless, the existence of subgroups with
distinctive patterns of performance and model fits (Fig. S6),
indicates some subgroups might be separable using other tasks
or measures: for example, ‘sign-tracking’ and ‘goal-tracking’
in Pavlovian conditioning paradigms (Flagel et al. 2007). These
groups (found in rodents and humans) are best described by
model-free and model-based RL respectively (Schad et al. 2019).

We emphasize that we contrasted prototypical AI with suc-
cessful Rescorla–Wagner RL models of this task, rather than
adding further parameters to either, or drilling down to their
irreducible differences (Gershman 2019). Model-based RL incor-
porates explicit Bayesian updating of beliefs about states (Dayan
et al. 2000; Gershman 2017) and is thus closer to AI. With respect
to specific parameters, some versions of AI have incorporated an
irreducible noise parameter (Mirza et al. 2018), while numerous
RL models have incorporated forgetting (Niv et al. 2015; Kato
and Morita 2016; de Boer et al. 2017), and a decision tem-
perature parameter that decreases during learning (Crites and
Barto 1995). Other RL-type models have incorporated approxi-
mate Bayesian features ‘by hand’, for example, learning rates
informed by uncertainty (Pearce and Hall 1980), or aspects of
belief-based learning (Camerer and Ho 1999).

Other Work Supports Striatal D2/3Rs Encoding the
Precision of Action Selection

Only one other neuroimaging study has looked at policy preci-
sion encoding (using AI) in the brain (Schwartenbeck et al. 2015):
in a gambling task, policy precision updates correlated with fMRI
activity in the substantia nigra (SN) and ventral tegmental area.
Importantly BOLD activity in these dopaminergic regions may
itself be related to midbrain D2/3R availability (Nour et al. 2018).
This result survived the inclusion of expected value and current
reward in the model. As decision stochasticity (i.e., softmax
temperature) is usually a fixed parameter in RL models, it cannot
be used as a time-varying fMRI regressor, and so its relationship
to the brain is rarely explored using neuroimaging.

Pharmacological studies have provided evidence of such a
relationship, however. Eisenegger et al. (2014) showed—using
a standard probabilistic bandit task and a Q-learning model—
that a moderate dose of a D2R antagonist (sufficient to block
postsynaptic striatal D2Rs; Mehta et al. 2008) increased decision
temperature for gains (but not losses), which is consistent with
the relationship we observed between D2/3R availability and
Factor 1 (containing ρwin but not ρloss). In participants with high
serum levels of the drug, the increase in decision temperature
was particularly marked. T/T homozygotes for the DARPP-32
gene, who are thought to have increased striatal dopamine,
show reduced random exploration in a bandit task (Gershman
and Tzovaras 2018). This is similar to findings in macaques
(Lee et al. 2015) in which specific D1R and D2R antagonists
were injected directly into the dorsal striatum: only the D2R
antagonist increased decision temperature. D2R knockout mice
also have increased decision temperature (Kwak et al. 2014).
Finally, sustained plateaus in dopaminergic firing in SN (pref-
erentially detected by striatal D2Rs) correlate with decision vari-
ability (not average reward rate), and chemogenetically-induced
increases in this firing promote exploitative responding (Koralek
and Costa 2019).

Taken together, the above studies are consistent with the
notion that transmission at striatal D2R receptors increases
the precision of—that is confidence in—action selection. Of
course, this can also be interpreted as increasing reward sensi-
tivity (Averbeck and Costa 2017): for example, disrupting D1R-
expressing neuron function in mice during a probabilistic RL
task increases decision temperature (Cieślak et al. 2018), but this
could also be seen as reducing the amplitude of reward predic-
tion errors (as reward sensitivity does). The ‘policy precision’
account, however, is a better explanation of the finding that a
D2R antagonist specifically disrupts the trial-by-trial relation-
ship between high-level uncertainty (phasic volatility) estimates
in a motor sequence task and reaction time (Marshall et al. 2016).

However, it should be acknowledged that some studies have
not found a relationship between D2Rs and choice stochasticity
(Wunderlich et al. 2012; Costa et al. 2015), and a few findings
imply the opposite of our results: D2R and D3R agonists caused
increased response variability in rats (Pesek-Cotton et al.
2011; Stopper et al. 2013), and ‘hyperdopaminergic’ (dopamine
transporter knockdown) mice had increased ‘stay’ decision
temperatures (Beeler et al. 2010) (but see Cagniard et al. 2006).
D2R antagonism can also block punishment-induced increases
in movement variability (Galea et al. 2013). Some complicating
factors in these experiments are: (i) at lower doses, D2/3R drugs
act preferentially on autoreceptors (Ford 2014), thus opposing
their postsynaptic actions, and (ii) very high (especially non-
physiological) concentrations of dopamine make behavior more
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disordered, not less, resulting in an inverted-U relation-
ship between dopamine and choice consistency (Cools and
D’Esposito 2011).

Given these complicating factors, it is helpful to view
dopamine’s function from a computational perspective. Whether
dopamine neuron firing increases in response to reward
prediction errors (as in RL) or confidence in one’s policy (as in AI),
in both cases it makes sense for physiological concentrations of
dopamine to reduce the stochasticity of actions, as modeling
work implies (Humphries et al. 2012; Fiore et al. 2016), by
facilitating the current policy and inhibiting competing ones
(Haluk and Floresco 2009; Cui et al. 2013; Ott et al. 2014;
Howard et al. 2017). This is analogous to its hypothesized role
in controlling the signal/noise in cortical representations of
states (Redish et al. 2007; Durstewitz and Seamans 2008). Indeed,
given Findling et al.’s (2019) striking finding that >50% of choice
variability in a volatile bandit task is attributable to noise in the
RL learning process (rather than exploration or decision noise),
it may be that catecholamines like dopamine and noradrenaline
can regulate the variance in learning/inference itself.

One might expect that D2/3R availability in the associative
striatum would relate to policy precision, rather than the limbic
part (as we observed). Both parts have been implicated in the
control of decision temperature; however, injecting a D2R antag-
onist into dorsal striatum increases decision temperature (Lee
et al. 2015), but disrupting transmission (using an NMDA recep-
tor antagonist) in ventral—but not dorsal—striatum impairs
response switching in rats (Ding et al. 2014). Likewise, injecting
a D2R agonist into ventral striatum in rats impairs behavioral
flexibility (Haluk and Floresco 2009).

Interpreting the [11C]-(+)-PHNO Signal

Given that [11C]-(+)-PHNO binds to both D2 and D3 receptors,
one might question whether the correlations between [11C]-(+)-
PHNO BPND and parameters were driven by D2Rs or D3Rs, and
whether this affects the interpretation of the results. D2Rs and
D3Rs are related to – and have similar inhibitory effects on—
their target neurons. Although [11C]-(+)-PHNO has much higher
affinity for D3Rs than D2Rs (Rabiner et al. 2009), the scarcity
of the former in the striatum means that only around 20% of
the ventral striatal and almost none of the dorsal striatal [11C]-
(+)-PHNO signal relates to D3Rs (Tziortzi et al. 2011). While the
indirect pathway is characterized exclusively by D2R expression,
both D2Rs and D3Rs serve as autoreceptors (Beaulieu and Gainet-
dinov 2011), although the latter probably have a more minor role
(Ford 2014).

We have interpreted the relationships we detected between
[11C]-(+)-PHNO BPND and computational parameters as being
driven primarily by tonic D2/3R occupancy by dopamine, rather
than D2/3R density, because it seems most likely that activity
at those D2/3Rs—rather than their density—mediates brain
computations. A PET study with and without dopamine-
depletion would be required to conclusively demonstrate this,
however. Also, as an agonist tracer, [11C]-(+)-PHNO is more
sensitive to synaptic dopamine levels than antagonist tracers
such as [11C]raclopride (Shotbolt et al. 2012). Importantly,
the correlation between [11C]-(+)-PHNO BPND and tonic D2/3R
occupancy (estimated using [11C]-(+)-PHNO BPND before and
after dopamine depletion with alpha-methyl-para-tyrosine
(α-MPT)) in dorsal and ventral striatum is estimated at around
r = –0.7 or greater (Caravaggio et al. 2016). This implies that
at least 50–60% of the variance (probably more, as dopamine

depletion is never total) in striatal [11C]-(+)-PHNO BPND is
accounted for by tonic D2/3R occupancy.

Limitations

The main limitation of this study is that PET is correlative and
[11C]-(+)-PHNO BPND in particular does not only reflect synaptic
dopamine levels, but also receptor density. Nevertheless, PET
is the only technique available to study dopamine function
in vivo in healthy humans. Also, given its cost, we could not
scan all the participants who performed the task: we therefore
could not examine relationships between [11C]-(+)-PHNO BPND

and AI parameters in the best-performing participants, which
may be more robust. There was also a delay of up to 15 days
between the behavioral testing and the PET scan: this could
potentially introduce some variance. The test–retest reliability
of [11C]raclopride binding in the striatum is >0.8 over a 5-week-
period (Alakurtti et al. 2015), but a similar timeframe has not
been studied using [11C]-(+)-PHNO.

Furthermore, the nature of PET scanning means that we were
only able to obtain single measures of dopaminergic function
for each participant, which we have interpreted as reflecting
tonic dopamine levels. This can be contrasted with temporally
resolved measures of dopaminergic responses (e.g., voltamme-
try or dynamic displacement studies) that would allow a more
fine-grained analysis of induced dopaminergic responses and
their computational roles.

The rationality of the Bayesian models that we used may
need further bounding (i.e., beyond ‘forgetting’) to faithfully
describe brain processes. Also, most participants may not begin
the task with perfect representations of the transition probabil-
ities, no matter how well-instructed they are, but become more
accurate during the task. This could be modeled in AI by an
increasing precision of beliefs about the transition probabili-
ties over time (FitzGerald et al. 2015). Likewise, one could add
Bayesian inference of states to the RL model.

Conclusion
We investigated how striatal D2/3Rs may control the variability
of action selection, using [11C]-(+)-PHNO PET imaging and com-
putational models of behavior in a go/no-go task: namely, AI
and Rescorla-Wagner RL. AI contains a precision over policies (γ )
that is similar in function to decision inverse temperature (or
outcome sensitivity) in RL models, but is dynamically updated
during the task, as participants become more confident. In the
25 participants undergoing PET imaging, we found a negative
relationship between participants’ priors on γ and D2/3R avail-
ability in limbic striatum, as predicted by AI process theories. We
also observed a negative linear relationship between decision
noise in RL and D2/3R availability in limbic striatum; and policy
precision, decision noise, and reward sensitivity all loaded on
a common factor that negatively correlated with this D2/3R
availability. These findings are consistent with the occupancy
of inhibitory D2/3Rs in the striatal indirect pathway reducing the
stochasticity of action selection (or, in AI terms, increases policy
precision).
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Significance Statement
All computational models of decision-making contain a
mechanism that controls how randomly or deterministically
actions are chosen, given the quality of the options available. In
RL models, the most ubiquitous form of decision-making model,
this ‘variability control’ mechanism is encoded in decision
‘noise’ and/or ‘outcome sensitivity’ parameters. In AI, a Bayesian
decision-making model, a ‘policy precision’ variable plays a very
similar role. The biological basis of this control over action
selection variability is unclear, however. Here, we use PET
imaging of striatal dopamine 2/3 receptors and computational
modeling of healthy human subjects’ behavior in a go/no-go
task to show that dopamine 2/3 receptor availability strongly
relates to decision variability, whichever model of behavior is
used.
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