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ABSTRACT
BACKGROUND: Reward-based decision making is impaired in patients with schizophrenia (PSZ), as reflected by
increased choice switching. The underlying cognitive and motivational processes as well as associated neural sig-
natures remain unknown. Reinforcement learning and hierarchical Bayesian learning account for choice switching in
different ways. We hypothesized that enhanced choice switching, as seen in PSZ during reward-based decision
making, relates to higher-order beliefs about environmental volatility, and we examined the associated neural activity.
METHODS: In total, 46 medicated PSZ and 43 healthy control subjects performed a reward-based decision-making
task requiring flexible responses to changing action–outcome contingencies during functional magnetic resonance
imaging. Detailed computational modeling of choice data was performed, including reinforcement learning and the
hierarchical Gaussian filter. Trajectories of learning from computational modeling informed the analysis of
functional magnetic resonance imaging data.
RESULTS: A 3-level hierarchical Gaussian filter accounted best for the observed choice data. This model revealed a
heightened initial belief about environmental volatility and a stronger influence of volatility on lower-level learning of
action–outcome contingencies in PSZ as compared with healthy control subjects. This was replicated in an
independent sample of nonmedicated PSZ. Beliefs about environmental volatility were reflected by higher activity
in dorsolateral prefrontal cortex of PSZ as compared with healthy control subjects.
CONCLUSIONS: Our study suggests that PSZ inferred the environment as overly volatile, which may explain
increased choice switching. In PSZ, activity in dorsolateral prefrontal cortex was more strongly related to beliefs about
environmental volatility. Our computational phenotyping approach may provide useful information to dissect clinical
heterogeneity and could improve prediction of outcome.
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Cognitive and motivational deficits are important characteris-
tics of patients with schizophrenia (PSZ) associated with clin-
ical and social outcomes (1–5). Reward-based learning and
decision making require the integration of cognition and
motivation and are impaired in PSZ (6,7). These impairments
are present at the onset of the disorder, are independent of
lower general IQ, remain stable over time (8,9), and have been
proposed as neurocognitive markers with potential clinical
utility (10). However, the mechanisms and associated neural
signatures remain to be identified.

Flexible reward-based learning and decision making can be
probed via variants of reversal learning [e.g., (11)]. In such
tasks, PSZ show increased switching between choice options
(8,12–17). The mechanisms of this unstable behavior remain
unknown but can be targeted by computational modeling (18).
In reinforcement learning (RL) (19), choices are selected based
on expected values, which are learned by weighting reward
prediction errors (RPEs) with a learning rate. RPEs closely align
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with phasic dopamine (20,21). Considering enhanced presyn-
aptic dopamine synthesis capacity in striatum of PSZ (22,23),
this could translate into enhanced phasic dopamine in PSZ,
which in turn might result in increased learning rates (24). This
could theoretically account for unstable behavior in PSZ, but
increased learning rates were not found [for reviews, see
(18,24,25)].

Theories of predictive coding (26) and hierarchical Bayesian
inference hypothesize that symptoms of PSZ (27–29) are a
consequence of false inference about the world due to altered
precision attributed to beliefs at different hierarchical levels.
Dysfunction at higher levels, which are thought to extract and
represent general and stable features of the environment,
might lead to experiencing the world as being more or less
volatile. With regard to positive symptoms (30), this is sup-
ported by empirical evidence [e.g., (31)]. When applying this
framework to reward-based decision making, beliefs about the
probability of rewards are formed at lower levels but are also
logical Psychiatry. Published by Elsevier Inc. All rights reserved. 173
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determined by learning about the volatility of reward proba-
bilities (32). This environmental volatility is related to learning
from lower-level RPEs in that it scales the belief update. Thus,
a belief in high environmental volatility can induce rapid up-
dates of lower-level beliefs about reward probabilities and
promote enhanced choice switching in PSZ.

Striatal and prefrontal activity is reduced during reward
anticipation and receipt in PSZ (33–35). Reduced striatal RPE
activity was observed in nonmedicated PSZ (17) but not in
medicated PSZ (15,36). Neural correlates of hierarchical
Bayesian learning were demonstrated in functional magnetic
resonance imaging (fMRI) studies in healthy individuals (37,38),
linking volatility and uncertainty to activity in frontostriatal cir-
cuits (32,39). While neural correlates of hierarchical Bayesian
learning were successfully used to distinguish between in-
dividuals with and without hallucinations and PSZ with and
without psychosis (31), this has not yet facilitated an under-
standing of the cognitive and motivational processes under-
lying impairments in flexible reward-based decision making.

Here, we used a reward-based reversal learning task during
fMRI in PSZ and healthy control subjects (HCs). Computational
modeling was applied to the behavioral data by comparing RL
and a hierarchical Bayesian learning model, the hierarchical
Gaussian filter (HGF) (40,41). We hypothesized that enhanced
choice switching in PSZ relates to higher-order beliefs about
the volatility of the environment and examined the associated
neural activity as measured by fMRI.

METHODS AND MATERIALS

Participants and Instruments

In total, 46 medicated PSZ and 43 HCs were included (see
Supplemental Table S1). Measures used to characterize par-
ticipants are summarized in Supplemental Table S1 and the
Supplement. Written informed consent was obtained from all
participants. The study was performed in accordance with the
Declaration of Helsinki and was approved by the local ethics
committee of Charité Universitätsmedizin.
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Task

Participants performed a task requiring flexible decision mak-
ing during fMRI (42–44). The task had 160 trials, each with a
choice between two cards (Figure 1A). The selected card
resulted in a monetary win or a monetary loss of 10 Eurocents.
One card was initially assigned with a reward probability of
80% and a loss probability of 20% (vice versa for the other
card). The task had a simple higher-order structure (Figure 1B):
an anticorrelation between the reward probabilities; whenever
one card was associated with a probability of 80%, the other
card would be associated with a probability of 20%. Reward
contingencies were stable for the first 55 trials (pre-reversal)
and for the last 35 trials (post-reversal). During the reversal
phase, contingencies changed four times after 15 or 20 trials.
For more details, see Supplement.

Analysis of Choice Behavior

Performance was quantified by correct choices of the stimuli
with high (80%) reward probability and was analyzed using
repeated-measures analysis of variance (ANOVA) with the
between-subject factor group and the within-subject factor
phase (pre-reversal, reversal, or post-reversal). Repeated-
measures ANOVA was used to test the effect of feedback on
subsequent choices (win–stay and lose–stay).

Computational Models of Learning

In RL, the difference between received rewards and expecta-
tions, the RPE, is used to update expectations for the chosen
stimulus (weighted by the learning rate a). For comparison with
previous work (17,42–44), we included RL with separate
learning rates for reward and loss trials (RL1 and RL2).

The HGF describes learning as a process of inductive
inference under uncertainty. It considers hierarchically orga-
nized states in which learning at a higher-level state de-
termines learning at a lower-level state by dynamically
adjusting the lower level’s learning rate. In our case, the top
level represents environmental volatility (how likely a change in
Figure 1. (A) Trial sequence from the decision-
making task. (B) Reward probabilities of both
choice options were perfectly anticorrelated and
were stable for the first 55 trials (pre-reversal);
changed 4 times, after 15 or 20 trials, during the
reversal phase; and remained stable for the last 35
trials (post-reversal). (C) Percentage choices of the
stimulus with 80% reward probability were signifi-
cantly lower in the patients with schizophrenia (PSZ)
group (main effect of group, F = 14.52, p , .001). (D)
PSZ were less likely to repeat the previous action
independent of feedback received in the previous
trial (main effect of group, F = 27.77, p , .001;
feedback 3 group interaction, F = 0.02, p = .89).
HCs, healthy control subjects; ITI, intertrial interval;
RT, reaction time.
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action–outcome contingencies is to occur). This top-level es-
timate is dynamically coupled with learning at the lower level
(see Figure 2). Trial-by-trial updates of posterior means at each
level are proportional to the prediction error (PE) from the level
below weighted by a precision ratio. See Supplement for
equations. We were particularly interested in environmental
volatility (m3) and its coupling with the lower level (k) and thus
inferred subject-specific parameters. We included a 2-level
variant (HGF2) to test whether the representation of volatility
in the 3-level HGF3 made it superior in explaining behavior.

HGF and RL provide different ways to learn expectations
about rewards, and both update expectations of the chosen
card only (single update [SU]). Based on the anticorrelated task
structure, we implemented a variant of each model updating
values (RL) or posterior means (HGF) of the unchosen card
simultaneously; that is, an increase of the chosen card implies
a decrease of the unchosen card (double update [DU]). For
equations, see Supplement. SU and DU variants of each model
(RL1, RL2, HGF2, and HGF3) were fit to the choice data
(Table 1).

Decision Models

Values (RL) or posterior means (HGF) were transformed to
choice probabilities by using the softmax (logistic sigmoid)
function (see Supplement). In binary choice tasks with anti-
correlated reward probabilities such as ours, there is choice
perseveration independent of learning or inference that differs
Figure 2. Model graph. The hierarchical Gaussian filter deploys hierar-
chically organized states in which learning about environmental volatility at a
higher-level state x3 determines lower-level learning about reward proba-
bilities x2. The lowest level, x1, is binary and corresponds to a choice being
rewarded (x1 = 1) or not (x1 = 0) at a given trial. The probability of a choice
being rewarded is a logistic sigmoid function of x2: p(x1 = 1) = s(x2). y rep-
resents the response of the subject. Shaded quantities are observed. Solid
lines indicate dependence in the generative model. Dashed lines indicate
dependence on inferred quantity (the generative model for y depends on m2
and m3, the inferred values of x2 and x3, respectively). The constant step size
u3 is the evolution rate of environmental volatility. k reflects the coupling
between the levels. The best-fitting model was a three-level implementation
(HGF3-DU-V) with double updating (not illustrated) together with a decision
model capturing choice repetition separately after rewards and losses (r),
third-level environmental volatility determining decision noise, and the initial
belief about environmental volatility m3 as an additional parameter inferred
from the data. DU, double update; HGF, hierarchical Gaussian filter; V,
environmental volatility.
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between win and loss trials. We captured this by estimating
parameters for win and loss trials that reflect this difference in
choice perseveration (rwin and rloss). Models that included in-
verse decision noise b as a free parameter had lower evidence
(see Supplement) than models where this was fixed to unity
(b = 1). We also tested the possibility that volatility is directly
linked to choice probabilities by letting third-level trial-by-trial
volatility (HGF3) serve as the inverse decision noise (see
Supplement). Because this introduced a volatility scale
anchored in observed behavior (switching or staying), it
allowed for estimating the mean of the subjective a priori belief
about initial volatility at the third level, mð0Þ3 , as a parameter of
HGF3. This cannot be applied to RL and HGF2 because they
do not feature inference on volatility. This led to 2 additional
models (HGF3-SU-V and HGF3-DU-V), resulting in a total of 10
models. For model fitting, see Supplement.
Model Selection

The negative variational free energy (an approximation to the
log model evidence) was used for random-effects Bayesian
model selection (45). The protected exceedance probability
(PXP) governed our model selection, which protects against
the null possibility that there are no differences in the likelihood
of models across the population (46). We also examined
whether the models explained the data better than chance
(17,47). A subject was classified as not fit better than chance if
the log likelihood of the data relative to the number of trials did
not significantly differ from chance (see Supplemental
Methods). Simulations of the task were run using the inferred
parameters to reproduce the observed data.
Model Parameters

Parameters of the winning model were compared between
groups using t test or the nonparametric Mann-Whitney U test
if assumptions of normality were violated (Kolmogorov-
Smirnov test). Bonferroni correction was applied according to
the number of parameters.
Statistical Analysis of fMRI Data

Using the general linear model approach in SPM8, an event-
related analysis was applied. On the first level, 1 regressor
spanned the entire trial from cue to outcome as in a previous
study (38). We added the following 5 modeling-based trajec-
tories as parametric modulators (not orthogonalized) to best
capture different aspects of the hierarchical inference process:
second- and third-level precision-weighted PEs (ε2 and ε3),
which were time locked to the outcome, precision weights (j2

and j3), and the third-level volatility (m3). All regressors span-
ned the entire trial and changed at outcome accordingly to PE
updates identical to Iglesias et al. (38). Regressors were
convolved with the canonical hemodynamic response function
in SPM8 and its temporal derivative (see Supplemental
Methods). For second-level analysis, a random-effects
ANOVA model, including contrast images of the 5 modeling-
based trajectories (precision-weighted PEs [ε2 and ε3], preci-
sion weights [j2 and j3], and the third-level volatility [m3]) and
the factor group, was estimated.
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Table 1. Bayesian Model Selection

RL1-SU RL1-DU RL2-SU RL2-DU HGF2-SU HGF2-DU HGF3-SU HGF3-DU HGF3-SU-V HGF3-DU-V

HCs 1 PSZ All (n = 89) PP 9.4 5.1 7.4 3.0 3.1 7.0 3.3 7.7 5.3 48.8

XP 0 0 0 0 0 0 0 0 0 100

PXP 0 0 0 0 0 0 0 0 0 99.9

HCs All (n = 43) PP 4.4 4.7 4.4 3.8 2.7 5.1 2.7 5.3 5.8 61.1

XP 0 0 0 0 0 0 0 0 0 100

PXP 0 0 0 0 0 0 0 0 0 100

PSZ All (n = 46) PP 11.8 7.1 11.6 4.75 8.3 10.0 9.3 10.9 4.9 21.4

XP 6.9 0.7 6.21 0.1 1.4 3.4 2.5 4.6 0.2 74.0

PXP 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1

HCs 1 PSZ Fit (n = 73) PP 9.4 5.1 7.4 3.0 3.2 6.9 3.3 7.7 5.3 48.8

XP 0 0 0 0 0 0 0 0 0 100

PXP 0 0 0 0 0 0 0 0 0 100

HCs Fit (n = 42) PP 4.5 4.5 4.5 3.8 2.8 5.3 2.8 5.5 5.8 60.5

XP 0 0 0 0 0 0 0 0 0 100

PXP 0 0 0 0 0 0 0 100

PSZ Fit (n = 31) PP 11.6 8.2 11.3 4.9 7.9 9.7 8.9 10.4 4.9 22.3

XP 5.5 1.1 4.8 0.1 1.0 2.5 1.7 3.3 0.1 80.0

PXP 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1

Bayesian model selection was governed by protected exceedance probabilities (PXPs) to protect against the risk that differences in model
evidence occur by chance. In this table, we also report exceedance probabilities (XPs) and expected posterior probabilities (PPs); also see the
Supplement. XP describes the probability of a model exceeding all other models in the comparison set, the probability that expected PPs differ.

DU, double update; HCs, healthy control subjects; HGF, hierarchical Gaussian filter with 2 or 3 levels; HGF3-**-V, 3-level HGF with environmental
volatility linked to decision noise with either SU or DU; PSZ, patients with schizophrenia; RL, reinforcement learning with one learning rate (RL1) or
separate learning rates for rewards and losses (RL2); SU, single update.
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RESULTS

Behavioral Data

Repeated-measures ANOVA on correct choices showed that
performance differed between phases, dropping during the
reversal phase (main effect of phase, F = 23.74, p , .001). PSZ
chose the better card less frequently irrespective of task
phases (main effect of group, F = 14.52, p, .001, and phase3

group interaction, F = 1.87, p = .16) (Figure 1C). The factor
phase was dropped from further analyses.

Repeated-measures ANOVA on the probability of choice
repetition showed that all participants stayed more with the
previous action after rewards compared with losses (main ef-
fect of feedback, F = 369.80, p , .001) and that PSZ switched
more independent of feedback from the previous trial (main
effect of group, F = 27.77, p , .001, and feedback 3 group
interaction, F = 0.02, p = .89) (Figure 1D).
Computational Modeling: Model Selection

Random-effects Bayesian model selection revealed a 3-level
HGF with double updating and third-level environmental
volatility linked to decision noise (Figure 2) as the most plau-
sible model (HGF3-DU-V, PXP = 99.5%; for PXPs of all
models, see Table 1). This model (HGF3-DU-V) was superior in
HCs (PXP = 100%, Bayes omnibus risk = 0) and remained first
ranking in PSZ (posterior probabilities = 21.4%, PXP = 74.0%).
In PSZ, there was no convincing evidence that models per-
formed differently from each other (Bayes omnibus risk = 1, all
PXPs = 10.0%).
176 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
In total, 15 PSZ and 1 HCs were not fit better than chance
by any model (Figure 3A). Neither when considering all PSZ
(PSZ-fit 1 PSZ-nofit) nor when considering PSZ-fit alone did
Bayesian model selection reveal a clearly superior model (both
times Bayes omnibus risk = 1) (Table 1). However, the identi-
fication of PSZ-fit ensures that individuals included in further
modeling-based analyses are fit better than chance by every
model (i.e., equally good models instead of equally poor
models).

Revisiting Behavioral Data

Based on this heterogeneity in PSZ regarding absolute model
fit, we revisited choice data with respect to 3 groups (HCs,
PSZ-fit, and PSZ-nofit). There was a main effect of group on
correct choices (F = 32.63, p , .001) (Figure 3B). PSZ-nofit
showed performance around chance levels (HCs vs. PSZ-
nofit, t = 7.04, p , .001; PSZ-fit vs. PSZ-nofit, t = 6.90, p ,

.001) (Figure 3B), while PSZ-fit had performance comparable to
HCs (t = 1.51, p = .14) (Figure 3B). The analysis of win–stay and
lose–stay behavior revealed a group 3 feedback interaction
(F = 20.68, p , .001). This resulted from a pronounced
reduction of win–stay behavior in PSZ-nofit only (PSZ-fit vs.
PSZ-nofit, t = 10.74, p , .001) (Figure 3C), while reduced lose–
stay was not significantly different between PSZ-fit and PSZ-
nofit (t = 0.01, p = .99) (Figure 3D). A group 3 feedback
interaction was also significant when comparing only HCs and
PSZ-fit (F = 6.79, p = .01) as well as significant main effects of
feedback (F = 636.30, p , .001) and group (F = 10.22, p = .01).
This difference between HCs and PSZ-fit was driven by
switching after loss (Figure 3C, D).
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Figure 3. (A, B) Classification above (black dots)
and beIow (red crosses) chance (A) and its influence
on overall choice performance (B). There was a main
effect of group (F = 32.63, p , .001). Patients with
schizophrenia (PSZ)-nofit (red) showed overall poor
performance (healthy control subjects [HCs] vs.
PSZ-nofit, t = 7.04, p , .001; PSZ-fit vs. PSZ-nofit,
t = 6.90, p , .001), while PSZ-fit (green) performed
comparably to HCs (blue) (t = 1.51, p , .14) (B).
(C, D) Analysis of win–stay (C) and lose–stay
(D) behavior showed a group 3 feedback interac-
tion (F = 20.68, p , .001). There was a pronounced
reduction of win-stay behavior in PSZ-nofit only
(PSZ-fit vs. PSZ-nofit, t = 10.74, p , .001) (C), while
reduced lose-stay behavior characterized both
groups of PSZ (PSZ-fit vs. PSZ-nofit, t = 0.01, p =
.99) (D). This group 3 feedback interaction was also
significant when comparing only HCs and PSZ-fit.
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In an exploratory analysis of 6 cognitive tests, only mea-
sures of verbal memory and working memory differed between
the 2 groups of PSZ, that is, were more impaired in PSZ-nofit
compared with PSZ-fit (see Supplemental Results). This sug-
gests that PSZ-fit and PSZ-nofit mapped on distinct cognitive
profiles. Because poor fit hinders the interpretation of
modeling-based behavioral and neuroimaging analyses in the
PSZ-nofit subgroup, all subsequent modeling-based results
are reported based on HCs (n = 42) and PSZ-fit (n = 31) only.

Computational Modeling: Parameters

Comparison of parameters of HGF3-DU-V (Table 2 and
Figure 4) revealed that the estimated mean of the a priori belief
about initial environmental volatility m

ð0Þ
3 was higher in PSZ (z =

3.15, p , .01) (Figure 4A). Trial-by-trial environmental volatility
was more strongly coupled with lower-level updating, as
demonstrated by higher k in PSZ (z = 2.51, p , .01) (Figure 4B).
The evolution rate of environmental volatility u3 did not differ
significantly between groups (z = 0.73, p = .47). To illustrate the
effects of differences in parameters on behavior after losses
(when PSZ-fit showed increased switching), we analyzed the
trajectory of m3 in a mixed-effects regression model with group
and feedback as predictors. This revealed higher m3 in PSZ-fit
overall. Across groups, m3 was higher after losses compared
with rewards, which was more pronounced in PSZ (resulting
from enhanced coupling between higher and lower levels of k).
For statistics, see Supplemental Results and Supplemental
Figure S2.

Computational Modeling: Reproducing Observed
Behavior

Simulating data based on the inferred parameters of HGF3-
DU-V (42 HCs, 31 PSZ-fit, 10 simulations per subject)
showed that PSZ-fit switched more than HCs (main effect of
group, F = 11.17, p , .001) and showed a pronounced ten-
dency to switch after losses (group 3 feedback, F = 7.68, p =
.01). Between-group findings on behavioral data were fully
reproduced, which yields an important validation of the
model’s ability to capture the observed data.
Biological Psychiatry: Cognitive Neuroscience and Neur
Computational Modeling: Replication in
Nonmedicated PSZ

We tested our model (HGF3-DU-V) in an independent sample
of nonmedicated PSZ (n = 24) and HCs (n = 24), who per-
formed another reversal-learning task (17). For statistics, see
Table 2. This replicated between-group findings and remained
significant when excluding participants not fit better than
chance (23 HCs, 13 PSZ; not reported).

Relation to Symptoms

We explored the relation between the 2 parameters that
differed between groups with different measures of cognition
(n = 6) and clinical measures (n = 7) within PSZ (Supplemental
Table S1) applying Bonferroni correction (p , .0083). In PSZ, a
higher initial belief about volatility m

ð0Þ
3 was associated with

reduced executive functioning and cognitive speed (Trail
Making Test B: r = 2.56, p , .001; Digit Symbol Substitution
Test: r = 2.56, p , .001) (Supplemental Table S3 and
Supplemental Figure S3). These correlations were not present
in the HC group. For all explorative correlations, see
Supplemental Table S3.

fMRI Task Effects (Pooled Across Groups)

Activity related to ε2 (a precision-weighted RPE) peaked in
bilateral ventral striatum and ventromedial prefrontal cortex
(PFC) among other regions (p-FWEwholebrain , .05, where FWE
is familywise error) (Figure 5A and Supplemental Table S4),
including the midbrain (p-FWEmidbrain-voi , .05, where voi is
volume of interest) (Supplemental Table S9), a well-known
network associated with RPEs. In contrast, third-level preci-
sion-weighted PE (ε3) was associated with activity in prefrontal,
parietal, and left insular regions (Figure 5A and Supplemental
Table S5). Environmental volatility (m3) covaried with activa-
tion in bilateral insula, cingulate cortex, parietal cortex, middle
temporal gyrus, globus pallidus, and thalamus as well as su-
perior, middle, and inferior frontal gyrus (Figure 6A,
Supplemental Figure S5, and Supplemental Table S8). For
more details on group-level fMRI effects, including activity
oimaging February 2020; 5:173–183 www.sobp.org/BPCNNI 177
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Table 2. Between-Group Comparisons of Model Parameters Using t Tests or the Nonparametric Mann-Whitney U Test If
Assumptions of Normality Were Violated

Models HCs (n = 42) PSZ (n = 31) Test Statistic

Learning Model

m3 20.84 6 0.49 20.47 6 0.48 z = 3.15, p , .01

k 0.87 6 0.60 1.35 6 1.12 z = 2.51, p , .01

u3 26.00 6 0.02 25.99 6 0.05 z = 0.73, p = .47

Decision Model

rwin 0.97 6 0.57 1.08 6 0.49 z = 0.88, p = .38

rloss 0.08 6 0.31 20.12 6 0.44 z = 2.37, p = .02

Replication Samplea

Test StatisticHCs (n = 24) Nonmedicated PSZ (n = 24)

Learning Model

m3 21.17 6 0.61 20.43 6 0.70 z = 3.88, p , .01

k 0.61 6 0.58 1.56 6 1.21 z = 3.46, p , .01

u3 26.09 6 0.02 25.99 6 0.06 z = 1.35, p = .18

Decision Model

rwin 0.70 6 0.74 0.43 6 0.66 z = 1.35, p = .18

rloss 20.07 6 0.59 20.28 6 0.77 z = 1.05, p = .30

Bonferroni correction was applied according to the number of parameters (5) (p , .01).
HCs, healthy control subjects; PSZ, patients with schizophrenia.
aSchlagenhauf et al. (17).
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specific for each group outside the effect of each regressor
combined for HCs and PSZ, see Supplemental Results.

fMRI Between-Group Effects

We conducted between-group comparison of the covariance
between the modeling regressors derived from the best-fitting
model and blood oxygen level–dependent response within
SPM. For the regressor of environmental volatility m3, a group
difference between HCs and PSZ was found in right dorso-
lateral PFC (DLPFC) (F contrast, using a mask representing the
average effect of m3 over all participants for correction of
multiple comparison [x = 34, y = 44, z = 24], F = 19.89, z = 4.24,
pFWE = .04) (Figure 6B). Post hoc analysis revealed stronger
activity related to volatility in DLPFC of PSZ compared with
HCs (t = 4.46, z = 4.4, pFWE = .02) (Figure 6C). There was no
significant difference between groups for any other
regressor.

DISCUSSION

To the best of our knowledge, this is the first study to apply
hierarchical Bayesian learning to choice and fMRI data of PSZ
178 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
during reward-based decision making. We present two main
findings. First, our modeling suggests that medicated PSZ acted
under an a priori enhanced higher-level belief about initial envi-
ronmental volatility and increased coupling between higher and
lower levels of learning, which leads to enhanced lower-level
belief updating about action–outcome contingencies. This pro-
vides a computational account of choice switching, as was
previously observed in PSZ (8,12–17). Using parameters of the
winning model to simulate new data, we fully reproduced
observed patterns in the behavioral data, and we replicated our
findings on parameters in an independent cohort of non-
medicated PSZ. Second, medicated PSZ displayed higher
DLPFC activity related to environmental volatility, which points
toward a prominent role of this region in promoting unstable
behavior in PSZ.

PSZ show enhanced choice switching (8,12–17), and we
demonstrate a possible underlying mechanism: an enhanced
initial belief about the environmental volatility and a stronger
coupling of volatility and lower-level learning of action–outcome
contingencies. This has two consequences. First, PSZ had an
overall stronger tendency to switch (enhanced initial belief about
volatility). Second, lower-level beliefsfluctuatedmorestronglyand
Figure 4. (A) The initial estimate of environmental
volatility is significantly higher in patients with
schizophrenia (PSZ)-fit (n = 31) as compared with
healthy control subjects (HCs). (B) The coupling
between the third level (environmental volatility) and
the second level is significantly stronger in PSZ-fit
(n = 31) compared with HCs.
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Figure 5. Blood oxygen level–dependent signal across all participants related to precision-weighted prediction errors from the second (red) and third (blue)
levels (A) and precision weight from the second (red) and third (green) levels (B), with overlap in yellow (both at p-FWEwholebrain , .05, k = 10). FWE, familywise
error.
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led to increased choice switching, particularly after (irrelevant)
losses. Thus, PSZ inferred more contingency changes in this dy-
namic task environment that are putatively signaled through los-
ses. Enhanced estimates of changes in context probabilities
werealso found inPSZ in thenonrewarddomain (48). Incontrast to
our finding of enhanced initial belief about volatility, Powers et al.
(31) probed conditioned hallucinations and reported
stronger lower-level priors about perceptual inputscombinedwith
reduced evolution of volatility in hallucinating participants. A
possible explanation may be that alterations of volatility
estimates differ with regard to the investigated functional domain,
potentially related to different symptom dimensions. As sug-
gested by our finding, cognitive beliefs about the structure of the
environment appear to bemore unstable, while perceptual beliefs
about sensory inputs appear to be overly stable and not appro-
priately adjusted following changes in the environment (31).

Because our model revealed consistent results in medicated
and nonmedicated PSZ, elevated beliefs about environmental
volatility may represent an important mechanism of impaired
flexible decision making. In a similar vein, an inability to stabilize
behavior according to an internal model of action–outcome
contingencies was found after administration of ketamine in
healthy control subjects (49), in line with the assumption that
reduced (prefrontal) NMDA receptor functioning (27,50) may lead
to aberrant cortical information processing (51). In line with this
idea, we found a stronger association in PSZ than in HCs of
beliefs about volatility with blood oxygen level–dependent ac-
tivity in DLPFC. However, in our fMRI study, we cannot infer
about involved neurochemical systems. On the behavioral level,
beliefs about higher volatility, in our model directly linked to
decision noise, can lead to more stochastic behavior (in our task
overall more choice switching). We therefore suggest that
Biological Psychiatry: Cognitive Neuroscience and Neur
heightened neural representation of volatility may generate more
stochastic behavior, although in our correlational and cross-
sectional study we cannot ascertain a causal link. We found a
negative correlation of the initial belief about volatility with in-
dependent neuropsychological measures of executive func-
tioning and cognitive speed in PSZ, thereby emphasizing its
dysfunctional character, while these associations were not
observed in the HC group.

PSZ’s heightened belief about volatility may render a system
(hyper)sensitive to any new input (51,52), thereby impeding the
detection of regularities in probabilistic environments and leading
to (hyper)flexible updating in response to (irrelevant) information.
Meta-analyses showed reduced prefrontal activity in PSZ
compared with HCs for (relevant) task versus (irrelevant) condi-
tionsacrossmultiple cognitivemeasures (53,54).On theonehand,
prefrontal dysfunction in PSZ may contribute to an enhanced
higher-level belief about volatility (e.g., by impairing the detection
of higher-level regularities), and such beliefs about volatility might
be assigned with enhanced precision (potentially in a compen-
satory manner). On the other hand, lower-level beliefs may be
more unstable and presumably assigned with lower precision,
leading to distinct aberrant experiences and behaviors depending
on the tested domain, with most evidence so far coming from
perceptual processing (55).

Aberrant cortical processing was theorized, at least in non-
medicated PSZ, to increase striatal dopamine turnover (27,50),
which might interfere with striatal and midbrain RPE signals.
Indeed, in nonmedicated PSZ, striatal RPE activity was found to
be reduced (17,56). In RL accounts (24), enhanced spontaneous
phasic dopamine transients could highlight irrelevant stimuli and
disturb the signaling of (relevant) RPEs. In our medicated sample
of PSZ, no significant differences in striatal activations to RPEs
oimaging February 2020; 5:173–183 www.sobp.org/BPCNNI 179
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Figure 6. (A) Across all participants, blood oxygen level–dependent signal related to volatility estimate from the third level at p-FWE , .05 for the whole
brain, k = 10. (B) m3-related blood oxygen level–dependent signal in the dorsolateral prefrontal cortex (DLPFC) differs between patients with schizophrenia
(PSZ)-fit (n = 31) and healthy control subjects (HCs) (F contrast displayed at p , .001 uncorrected; corrected for main effect of m3 over all participants [x = 34,
y = 44, z = 24], F = 19.89, z = 4.24, p = .038). (C) A post hoc analysis of regression parameter estimates at the peak of the group difference (x = 34, y = 44, z =
24) showed that this was driven by heightened activation related to environmental volatility in DLPFC of PSZ-fit (n = 31) compared with HCs (t = 4.46, z = 4.4,
p = .019). FWE, familywise error.
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were observed, in line with reports of absent differences in striatal
RPEs in medicated PSZ (14,15). This suggests medication status
as an important factor relating to striatal RPE signaling similar to
medication effects on striatal reward anticipation in PSZ
(35,57,58). In hierarchical Bayesian learning, representation of
lower-level PEs may be similar in patients and control subjects,
but potentially reduced precision of lower-level beliefs might
highlight irrelevant inputs (e.g., resulting in choice switching). This
could, at least in theory, result from a common aberrant
prefrontal process, as discussed above, but also from an effect of
antipsychotic D2 receptor antagonists in the striatum (29).
However, we did not observe group differences in midbrain and
striatum for precision weights and precision-weighted PEs. While
our data indicate a disrupted higher-level process with evidence
from behavioral modeling and fMRI, disturbed lower-level
processes are supported by our behavioral modeling but not by
the presented fMRI data.

Limitations

First, the lack of clear superiority of any model for the data
from PSZ, as well as the substantial number of PSZ in which
no model fitted better than chance, needs to be considered.
Excluding these patients from further modeling-based ana-
lyses can be considered restrictive and may reduce the
180 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
generalization of results. However, 2 subgroups were identified
with (task-independent) different cognitive profiles, which
contributes to disentangling heterogeneity across PSZ—a
fundamental challenge for psychiatric research (59). By con-
trolling whether subjects’ performance can actually be inter-
preted as assumed by the theories, we eliminated a potential
key confound. Nevertheless, it remains problematic if clinical
groups differ in how well they are described by models of in-
terest, as observed in our study because parameters are
conditional on the model. This impedes the interpretation of
differences in parameters across groups [for a discussion of
this problem, see (60)]. In principle, Bayesian model averaging
(61) can help, but this is not established for non-nested models
as used here. Future studies might implement tasks with
adaptive difficulty to reduce the number of patients whose
behavior cannot be explained by any model, which may
potentially be a result of excessive cognitive demands.
Furthermore, the relation between different Bayesian modeling
approaches such as the HGF and active inference models
should be explored (62).

Second, we suggest that overestimating volatility is one
possible explanation for choice switching. However, in our
model, volatility partly determines decision noise. This limits
the differentiation between the concepts of volatility and
ebruary 2020; 5:173–183 www.sobp.org/BPCNNI
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exploration and limits interpretability of volatility estimates to
some extent. The finding that this model performs best is an
indication that our data do not fully support a strong distinction
between volatility and exploration. Additional task-based ma-
nipulations would be required to overcome this (37), which
would most likely involve longer tasks than our patient-friendly
fMRI task (,15 minutes, 160 trials). The formulation of our
response model suggests that results are still informative. We
control for overall differences in stickiness with 2 parameters
that change the shape of the decision function differently for
wins and losses and exert a bias toward repeating or switching
responses irrespective of learned expectations (see
Supplement). Therefore, decision noise is determined not only
by trialwise volatility but also by subject-specific traits that are
expressed in a condition-specific fashion. This disentangles
volatility and decision noise to some degree.

Third, this is a case-control study that fundamentally limits
the inferences that can be drawn from the results, for example,
the development of inappropriately high initial beliefs about
volatility over the course of illness, its stability over time, and its
relation to broader cognitive deficits consistently found in PSZ.

In summary, we present a computational mechanism
putatively underlying unstable behavior in PSZ: a stronger
coupling of heightened beliefs about environmental volatility
with lower-level learning, which was present in medicated and
nonmedicated PSZ. In medicated PSZ, this was accompanied
by enhanced activity related to environmental volatility in
DLPFC. Future studies should aim to test specificity of the
presented results for PSZ and overcome the limitation of the
lack of longitudinal clinical data. Computational modeling may
aid in the identification of subgroups of PSZ (63) and poten-
tially inform the prediction of treatment response to antipsy-
chotic drugs by aiming to dissect the important biological
heterogeneity and interindividual differences among patients
(64). These steps toward clinically useful procedures will
require carefully designed prospective studies in the frame-
work of computational psychiatry (29,65–67).
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