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Computational Hierarchy in Cortex

Abstract

Hierarchies feature prominently in anatomical accounts of cortical organisation. An
open question is which computational (algorithmic) processes are implemented by
these hierarchies. One renowned hypothesis is that cortical hierarchies implement a
model of the world’s causal structure and serve to infer environmental states from
sensory inputs. This view, which casts perception as hierarchical Bayesian inference, has
become a highly influential concept in both basic and clinical neuroscience. So far,
however, a direct correspondence between the predicted order of hierarchical Bayesian
computations and the sequence of evoked neuronal activity has not been demonstrated.
Here, we present evidence for this correspondence from neuroimaging and
electrophysiological data in healthy volunteers. Trial-wise sequences of hierarchical
computations were inferred from participants’ behaviour during a social learning task
that required multi-level inference about intentions. We found that the temporal
sequence of neuronal activity matched the order of computations as predicted by the
theory. These findings provide strong evidence for the operation of hierarchical
Bayesian inference in human cortex. Furthermore, our approach offers a novel strategy
for the combined computational-physiological phenotyping of patients with disorders

of perception, such as schizophrenia or autism.
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The notion of hierarchy is central to neurobiological accounts of brain organisation.
Anatomical tract tracing studies have revealed a hierarchical organisation of cortical
areas, based on identifying ascending (bottom-up) and descending (top-down)
connections with specific laminar patterns (1-3). Remarkably consistent cortical
hierarchies can be derived from laminar patterns of cytoarchitecture (4). These
structural hierarchies have classically been interpreted as the basis of sensory
processing streams and of the associated variations in spatial (5) and temporal (6-8)

receptive fields across processing levels.

By contrast, the actual computations executed by cortical hierarchies are highly
debated. One leading proposal derives from predictive coding (9, 10) and related
theories that view the cortex as an organ for hierarchical Bayesian inference (11-13). This
theory suggests that cortical hierarchies embody an internal (“generative”) model of the
world that recapitulates the causal structure of the environment. Such a model would
enable probabilistic predictions about how environmental states cause noisy sensory
inputs. Conversely, inverting this generative model would allow for hierarchical

Bayesian inference on the state of the world; this corresponds to perception.

The results of various recent experimental and theoretical studies on human perception
are consistent with the idea of hierarchical Bayesian inference as an algorithmic
principle of human cortex (e.g., (14-18)). However, central predictions of the
hierarchical Bayesian account of brain function remain empirically untested. Most
importantly, a direct correspondence between the sequence of hierarchical
computations as predicted by the theory and the empirically observed sequence of
computation-specific neuronal responses has not been demonstrated yet. In this paper,
we present evidence for this correspondence using multimodal imaging and a cognitive

task requiring multi-level learning.

We obtained functional magnetic resonance imaging (fMRI, N=47) and
electroencephalography (EEG, 128 channels, N=48) data from healthy volunteers. The
participants performed a variation of an established social learning task (19); for details,
see (20). In this deception-free task, participants predicted the trial-wise outcome of a

binary lottery, with veridical probabilities displayed as a pie chart (55-75%; Figure 1).
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We refer to this pie chart information as “cue”. Additional advice was provided by a
videotaped adviser who had more accurate (80%) information but also incentives to
switch between helpful or misleading advice as the task proceeded. Participants were
informed truthfully that advisers had their own (non-disclosed) incentives and that
their intention to help or mislead might change over time. In order to optimally
integrate the advice with the cue (pie chart), participants thus not only had to infer (i)
on the accuracy of current advice, but also (ii) on the intention behind it and (iii) on
how this intention might change in time (volatility). In other words, on each trial, the

participants faced a hierarchical inference problem with three levels.

A hierarchical inference process of this sort can be parsed into a sequence of belief
updates that, under generic assumptions, are governed by two quantities: prediction
errors (PEs) and precision weights (20, 21). The latter are crucially important since they
determine how strongly PEs drive belief updates (21). We inferred subject-specific
expressions of trial-wise belief updating sequences, including the underlying PEs and
precision weights, from the participants’ expressed behaviour. For this, we employed
the hierarchical Gaussian filter (HGF (21)), a commonly used model for computational
analyses of behaviour in terms of hierarchical Bayesian inference (e.g., (20, 22-24)).
Notably, we performed an initial model selection procedure to (i) verify that the HGF
provided a better explanation of the participant’s behaviour than other common
models, and to (ii) determine the most likely belief-action mapping (response model);

see Methods for details.

Importantly, the HGF specifies a concrete order in which PEs and precision weights
must be computed in order to update beliefs across all levels of the hierarchy (Figure
2A). This allowed us to test for a direct correspondence between the predicted sequence
of computations and the temporal order of associated brain responses. To this end, we
conducted trial-by-trial analyses of EEG and fMRI data, using a general linear model
(GLM) that was informed by the subject- and trial-specific estimates of PEs and
precision weights (for details, see Methods). In brief, at the single-subject level, the
regression model contained all computational regressors of interest shown by Figure

2A; these regressors were not orthogonalised with respect to each other. For each
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computational quantity, we thus estimated its unique contribution to explaining brain
activity in voxel space (fMRI) and at all EEG sensors over a peri-stimulus time window
of [50:550ms] (relative to outcome onset). Our analysis focused on the belief updating
process (at the sharply defined time points of trial outcome), and not on the predictions
(whose exact timings during the video-clip based advice delivery was uncertain).
Random effects group analysis across all participants was performed using a standard

summary statistic approach.

The results of the sensor-level EEG analysis are summarised by Figure 3. We used F-
tests to identify significant brain responses and report effects that survived whole-brain
family-wise error (FWE) correction at the cluster-level (p < 0.05), with a cluster-defining
threshold (CDT) of p<o.001 that ensures valid inference (see Methods). It can be seen
that the temporal order of activity associated with the different computational variables
precisely matches the hierarchical processing sequence as prescribed by the HGF
(compare Figure 2A). From a cognitive perspective, this mirrors the hierarchical form
of inference in our task, from non-social to social quantities and with increasing degrees

of abstraction.

Beginning at the bottom of the computational hierarchy, the three low-level PEs (with
respect to cue, advice, and outcome) and belief precision about the advice occured first,
as predicted by the model. The PEs were associated with EEG activity peaks at 134 ms,
166 ms and 258 ms at occipital, posterior, and occipital-temporal channels, respectively.
Interestingly, activity associated with the advice PE differed depending on whether the
advice was perceived as helpful or misleading: it peaked at 166 ms in posterior channels
for positive PE trials (when advice was more helpful than predicted) and at 168 ms in
frontal channels for negative PE trials (advice was more misleading than predicted).
Belief precision about the advice followed with a positive peak at 352 ms over posterior-

central channels.

As predicted by the model, PEs that updated the volatility of the adviser’s intentions
came next, showing a positive activity peak at 398 ms in frontocentral channels. This
was followed by the associated precision weight at 534 ms over posterior-central

channels - an order again in line with the predictions by our model.
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In summary, this sensor-level EEG analysis found a clear match between the predicted
order of hierarchical computations within each trial of the social learning task and the
temporal sequence of associated EEG responses. Notably, this correspondence between
the sequence of evoked responses and the model’s predictions is unlikely to arise by

chance (p = 0.033; see Methods).

One might ask why the activations do not seem to be spatially aligned in a perfectly
posterior-anterior fashion, as one might expect for an underlying anatomical hierarchy.
Such an expectation, however, should be taken with a grain of salt, for two reasons:
First, anatomical hierarchies are defined by connectional and cytoarchitectonic criteria
(1-4) but do not strictly follow a posterior-anterior gradient (25); for example, in the
visual system, the frontal eye field is situated at a low level of the hierarchy (3). Second,
the analysis reported above was conducted at the sensor level; this makes it difficult to
link the evoked potentials to specific cortical regions and does not reveal the sources of
activity related to the different computational quantities. To address the second issue,
we used the fMRI data from the same task as spatial priors to guide EEG source
reconstruction and test whether the observed correspondence between sequences of

computational steps and neuronal activations would also hold in source space.

All of the computational quantities implied by our hierarchical Bayesian model also
gave significant results in trial-by-trial fMRI analyses, surviving whole-brain correction
at the cluster-level (p<o.05; with a CDT of p<o.001; Figure 2B, Table S3). These fMRI
activations by trial-wise PEs and precison weights mapped onto classical “theory of
mind” regions; in particular, precisions and PEs about advice accuracy and the adviser’s
intentions were localised in cortical areas involved in mentalising functions, such as the
middle cingulate gyrus, medial prefrontal cortex and temporo-parietal junction (26-28).
Using these fMRI results as spatial priors for constrained source localisation (Figure 4),
we identified the cortical sources of the EEG activity shown in Figure 3 (for details of

the source reconstruction procedure, see Methods).

For each significant peak detected in the sensor-level ERP analysis (red labels in Figure
4), we found a temporally matching counterpart at the level of cortical source activity

(grey bars in Figure 4). These cortical sources explained, on average, 94% of the signal
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variance within the time window of the ERP effects. Starting at the bottom of the
hierarchy, the activity peak elicited by cue PEs at 134 ms (after trial outcome) was
localised to the right lingual gyrus. This was followed by the advice PE (right anterior
temporo-parietal junction at 166 ms), and the outcome PE activity (at 258 ms in the
right superior occipital cortex). Subsequently, the activity peak of advice precision at
352 ms was localised to right superior frontal gyrus, the volatility PE activity peak at 398
ms to right dorsal anterior cingulate gyrus, and finally, the volatility precision activity

peak at 534 ms to right dorsal middle cingulate gyrus (Figure 4).

In conclusion, sensor-level EEG and fMRI-guided source space EEG analyses
consistently demonstrated a direct match between the sequence of computations
prescribed by the HGF as a generic model of hierarchical Bayesian inference and the
temporal order of cortical activations elicited by these computations. This provides
empirical support for hierarchical Bayesian inference as a central algorithmic principle
of cortex, as proposed by predictive coding and related “Bayesian brain” theories (9-13).
Our analyses illustrate how a combination of multimodal imaging and computational
modelling of behaviour can track the operation of cortical algorithms in space and time.
This approach may prove useful for clinical purposes. Given that aberrant hierarchical
Bayesian inference has been implicated in the pathophysiology of schizophrenia (29, 30)
and autism (24), sensitive probes are required that can detect subtle disturbances of
hierarchical inference in the temporal domain. The computationally informed single-
trial EEG analysis presented in this paper may usefully complement traditional model-
based fMRI methods and finesse the computational phenotyping of patients with

mental disorders.
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Materials and Methods

Participants

95 healthy male right-handed volunteers (EEG: N=48; fMRI: N=47) between 19 and 30
years participated in two studies (age: 23+0.49 in the EEG study and 24+0.43 in the fMRI
study [mean=+SE]). Both samples corresponded to placebo groups from pharmacological
studies whose results will be reported in future publications. There was no overlap
between the participants recruited for fMRI and EEG, as we wanted them to be naive
with respect to the social learning task. Participants gave written informed consent
before entering the study. Ethics approval was obtained by the Ethics Committee of the
Canton of Zurich (KEK-ZH-Nr. 2012-0567).

Participants had normal or corrected-to-normal vision and were healthy as indicated by
medical history and clinical examination including electrocardiography prior to
participation. Smokers or any individuals with a previous history of neurological or

psychiatric diseases or drug abuse were excluded from participation.
Experimental Design

Stimuli and social learning task

The stimuli were selected from a previous behavioural study using face-to-face
interactions(31). In this initial study, participants were randomly assigned to a “player”
or an “adviser” role. The player predicted the outcome of a binary lottery with
probabilities displayed in the form of a pie chart (varying from 55-75%). Players accrued
points with every correct prediction; their final payment was proportional to the total
score plus a potential bonus if the score exceeded pre-defined silver or gold targets
(Figure 1A, top panel). The adviser’s role was to instruct the player which option to
choose by holding up either a green or a blue card. The adviser based his suggestion on
information he received (the probability of this information being valid was always
80%). Furthermore, the adviser could monitor the player’s progress with respect to his
own silver or gold targets; importantly, these targets differed from those of the player

and provided an incentive structure that motivated the adviser to alternate between
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giving helpful or misleading advice throughout the game (Figure 1A, lower panel).
Players were truthfully informed that advisers had distinct incentives which could
motivate them to change their intentions during different phases of the game.
Additionally, they were told that advisers received more accurate, albeit incomplete

information; thus, the advice could also be unintentionally correct or incorrect.

Based on the main strategy employed by the advisers, two of the recorded full-length
videos were edited into 2 second segments for the purpose of the present study. All
video clips were matched in terms of their luminance, contrast, and colour balance
using the video editing software Adobe Photoshop Premiere CS6. One of the two chosen
advisers was randomly assigned to each participant and no differences in performance
and degree of reliance on the advice were observed between the two adviser groups:

t(47)=-0.5652, p=0.57 and t(46)=0.2327, p=0.81, respectively.

Procedure

The social learning task described above was adapted for the present studies as follows:
Participants were presented with the binary lottery and video clips of the advisers
indicating their recommendations for 2 seconds. Subsequently, they were asked to
predict the outcome (and indicate the prediction by button press) during a 5 second
decision phase that was followed by the presentation of the outcome, i.e., the winning
colour (Figure 1b). In total, the experiment consisted of 210 trials which contained 6

visual cue types (75:25, 65:35, 55:45, 45:55, 35:65, and 25:75 % blue: % green pie charts).

MRI data acquisition

MRI data were acquired using a Philips Ingenia 3T whole-body scanner with a 32-
channel SENSE head coil (Philips Medical Systems, Best, The Netherlands) at the
Institute for Biomedical Engineering, University of Zurich and ETH Zurich. In both the
fMRI and EEG studies, high-resolution inversion-recovery Ti-weighted 3D-TFE (turbo
field echo) structural images were acquired for each participant (301 slices; voxel size

1.1x1.1x0.6 mm?; FOV 250 mm; TE 3.4 ms).
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In the fMRI study, we additionally acquired gradient echo T2*-weighted echo-planar
images (EPIs) with blood-oxygen-level dependent (BOLD) contrast (33 slices/volume;
TR 2.5 s; voxel size 2x2x3 mm?; interslice gap 0.6 mm; FOV 192x192x180 mm; TE 36 ms;
flip angle 90°). Oblique-transverse slices with +15° right-left angulation were acquired.
The experimental task was run in two sessions to give participants a short break to
move. There were 740 and 580 volumes in the first and the second session, respectively,
together with five discarded volumes at the start of each session to ensure T1 effects

were at equilibrium.

Stimuli were projected onto a display (NordicNeuroLab LCD MR-compatible 32-inch
monitor) which participants viewed through a mirror fitted on top of the head coil.
Participants’ heart rate and respiration was recorded with a 4-electrode

electrocardiogram and a breathing belt.

The functional images were realigned and co-registered to the participant’s own

structural scan using SPMi2 (http://www.fil.ion.ucl.ac.uk/spm/; version 6906). The

structural image was processed using a unified segmentation procedure combining
segmentation, bias correction, and spatial normalisation (32); the same normalisation
parameters were then used to normalise the EPI images. Finally, EPI images were

smoothed with a Gaussian kernel of 6mm full-width half-maximum.

Correction for physiological noise was performed with the PhysIO toolbox (33)

(http://www.translationalneuromodeling.org/tapas) using Fourier expansions of

different order for the estimated phases of cardiac pulsation (3rd order), respiration (4th

order) and cardio-respiratory interactions (1st order).

EEG Data acquisition and preprocessing

EEG was recorded at a sampling rate of 500 Hz using a BrainVision system with 128 scalp
electrodes. The horizontal and vertical electrooculogram (EOG) was recorded from

channels attached infraorbitally and supraorbitally to the left eye.

Pre-processing and data analysis was performed using SPMi2. Continuous EEG

recordings were referenced to the average, high-pass filtered using a Butterworth filter
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with cut-off frequency 0.5 Hz and low-pass filtered using Butterworth filter with cut-off
frequency 48 Hz. We focused our analyses on the amplitude modulations following the
presentation of the outcome. The data were epoched into -500 to 550 ms segments
around the presentation of the outcome. An EEG forward model (3-shell Boundary
Element Model (34)) was specified based upon (i) individual electrode locations
digitally recorded during the experiment and (ii) canonical head meshes (inverse)

normalized to match the subjects’ structural MRI scan (35).

We removed eye-blink related artefacts by applying a multiple source eye correction
method (36), as implemented in SPM12, version 6906. Eye blink events were identified
with a thresholding approach applied to the vertical EOG data; these events were used
to epoch the continuous EEG into 1000 ms segments (-500 ms to 500 ms around these
events). Ocular source components were determined using singular value
decomposition (SVD) of topographies from all the trials and all the time points and
combined with a set of cortical topographies generated by SVD of the cortical mesh lead
fields. The pseudo-inverse of the resulting matrix was then used to remove the spatial
subspace spanned by the eye-blink components, but orthogonal to the brain
components from the data epoched around the outcome presentations. We used three
ocular components. This number was determined empirically by starting at one and
increasing the number until there was no further reduction in the amplitude of the

average eye-blink when corrected with the same method.

Finally, an additional artifact rejection procedure was applied using a thresholding
approach to detect problematic trials or channels. Trials in which the signal recorded at
any of the channels exceeded 100 [V relative to the pre-stimulus baseline were removed
from subsequent analysis. We also visually inspected the trials to verify that these
outliers were artefactual. The total number of artefactual trials that were rejected was
149, with an average of 3.17 + 4.3 trials per participant and a range of 0-19 trials across

subjects.

Strategy for Model-Based Analysis of Single-Trial EEG data
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Following preprocessing and artefact correction as described above, single-trial EEG
data were converted to 3-dimensional volumes with two spatial dimensions (anterior-
to-posterior and left-to-right directions of the scalp surface) and a temporal dimension
(peri-stimulus time). These scalp x time 3D images can be subjected to statistical
analysis using the general linear model (GLM) in an analogous fashion to fMRI(37). This
is a well-established approach for statistical analysis of scalp EEG data using the SPM
software(38). For both imaging modalities, we pursued single-trial analyses where a

computational model of behavioural responses provided trial-wise predictions.

In the following, we describe the computational models we considered and how trial-
wise predictions from the chosen model entered GLMs of voxel time-series and evoked

EEG responses, respectively.

Model Space

We formalised our hypotheses about the mechanisms underlying the players’ observed
behaviour in terms of a hierarchical model space with 12 models including both Bayesian
and reinforcement learning models(39), resulting in a 3x2x2 factorial model space (for
details, see (20, 31) and Figure S1). Model parameters were estimated using a gradient-
based optimization method (the BFGS algorithm(40)) and compared using random

effects Bayesian model selection (BMS(41)).

Perceptual Model: Hierarchical Gaussian Filter

The hierarchical Gaussian filter(21, 42) (HGF) is a hierarchical Bayesian model that
captures subject-specific approximations to ideal hierarchical Bayesian inference. It

comprises a hierarchy of hidden states xik), xgk), ..,x,gk)

that cause the sensory inputs
the agent experiences on each trial k. These states evolve in time as Gaussian random
walks where the step-size is controlled by the state of the next-higher level. The highest
level is assumed to evolve with a constant step-size, and the lowest level gives rise to

the experimental stimuli the agent encounters.

In our case, x; represents a categorical variable, i.e., the advice accuracy; any single

piece of advice is either accurate (xik) = 1) or inaccurate (xik) = 0). All states higher
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than x; are continuous. State x, represents the adviser’s fidelity in logit space. The
highest state x5 represents the phasic log-volatility of the advisers’ intentions. The exact
equations describing these relations and the overall generative model are described

elsewhere(42).

The HGF parameters capture the individual learning style of participants and determine
the evolution of their beliefs in time. Here, we estimated parameters k, w, and 9 that
denote the strength of the coupling between the second and third level, the tonic log-
volatility on the second level, and the variability of volatility over time (meta-volatility),

respectively.
Inversion of the Model: The update equations

The HGF update equations are derived by variational model inversion and provide
approximately Bayes-optimal rules for trial-by-trial updating of an agent’s beliefs, given
this agent’s particular set of parameter values(42). “Belief” refers to a posterior

probability distribution as described by its sufficient statistics.

On trial k, an observed trial outcome u, which indicates that advice was either accurate
(u® = 1) or inaccurate (u®) = 0), leads to a hierarchical cascade of belief updates

described by the update equations. At the bottom level, there is complete

correspondence between observation u®), posterior belief uik), and state xik) because

the accuracy of the advice is seen by the participant without ambiguity:

k k
Mg ) — () = xi ) (1)

However, the observed outcome u® induces a prediction error (PE) 61(k) with respect

to the prediction ﬁgk) (the agent’s belief about the probability of the advice being correct

after the pI‘eViOUS trial; see Eq. 5)2
k NG
51( ) _ u(k) ”5 ) (2)

The ensuing precision-weighted PE updates are hierarchically organized in the sense

that the agent needs to use 51(k) to update its second-level belief about the fidelity xék)of
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() »

the adviser. x, ’ is continuous, assumed to be Gaussian and thus represented by the

sufficient statistics p, () (mean) and , () (precision, i.e., inverse variance). The update

A,u(k) = ugk) ,ugk) to the prediction ,u( ) = ugk is driven by §; and weighted by

m,(42) :

1
k k
2ud = (k) 5 3)

This update in turn leads to a PE, 62(k), induced by Augk). At the third level, the agent’s

belief about the phasic log-volatility xg(,k) of the adviser’s fidelity is represented by the

() )

sufficient statistics p3 ° and n(k , and the pattern from the second level repeats.

Specifically, the update A,u(k) = ugk) ,ugk) to the prediction ,u( ) = ugk Y is driven by

8, and weighted by 75(42):
W) o L 500
Apd o — 5§ (4)

(k)
T3

After performing these belief updates about the adviser’s fidelity and the volatility of his
fidelity, the agent is able to update the probability ﬁgkﬂ) that the advice on the next
trial will be correct. This corresponds to the logistic sigmoid of the current expectation

of adviser fidelity:

. 1
M§k+1) (Mgk)) 1+exp( (k)) (5)

With every new trial, another cycle of these hierarchically cascading updates takes
place. Since the updates are precision-weighted PEs, our analysis includes the PEs that

drive the updates (8; and §,) and the precisions that weight them (1, and m3).

However, PEs relating to the accuracy of the advice (“advice PE”) are not the only ones

involved in the task. The simplest PE relates to the outcome u® relative to the cue ¢

(“cue PE”):
599 =y — g0, (6)
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Another, more complicated PE relates to the outcome u(® relative to predicted

outcome 'ul(a ) (“outcome PE”)Z
5 k k k 7

where the predicted outcome is the weighted average of the predictions ﬁik) from

advice and é® from the cue:

up? =47+ (1 - e, (®)

where ¢ is the individually estimated social (advice) weight parameter of each

participant.

This results in a hierarchy of six PEs and precisions that inform beliefs and their updates

in the winning model of our task. In order, they are

1. Cue PE §;

2. Advice PE §;

3. Outcome PE §,

4. Precision of belief about advice fidelity m,
5. Volatility PE 6,

6. Precision of belief about volatility m;

While the first four quantities do not depend on each other computationally, they are
all low-level PEs and precisions. Here, they are ordered by computational and
conceptual complexity as reflected by the equations for é;, §;, and 6, above. Advice

belief precision is given by

1

®) A (k) A (k)

T, = — — +a,\1=4,7 ). 9)
? l/ngk Dy exp(zc,uék Dy w) ' ( ' )

The HGF model of our task predicts that these three low-level PEs and the advice belief

precision are computed first, before the following high-level quantities can be

computed. According to the model, this should occur in the following, strictly defined

order:
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§, depends on 7, directly and on §; because it contains Au,:

1/n£k) + (A/xgk))z

859 = -1, (10)
g 1/7t§k_1) + exp (K,ugk_l) + w)
m3 depends on §,:
SO S K—Zw(k)(w(") + r(")(S(k’)) (11)
DTy e e

where we have used the notation and definitions of (42).

This creates a hierarchical computational architecture in which PEs and precisions are
successively elaborated and passed to higher levels, thereby predicting the temporal
order in which the associated neurophysiological events should occur. A combinatorial
analysis shows that, under this hierarchy, there are 4! sequences that are consistent with
the prescribed temporal order (with the three low-level PEs and advice precision in any
order, but volatility PE and volatility precision assigned to fifth and sixth computation

step), out of a total of 6! possible sequences.

Response Models

Response models map the agent’s beliefs onto decisions(43, 44). As participants had
access to both the advice and the binary lottery, we modeled their beliefs about

outcomes as the integration of the two sources of information (see Equations 7 and 8).

Responses were modelled using a softmax rule, in which the decision temperature was
modulated by the perceived volatility of the adviser’s intentions, as in(20, 31). Responses

were coded as y = 1 for taking the advice, y = 0 for rejecting it:

B
b(k)

p(y® = 1[uf?) = £ (14)

#b(k)B +(1- .Ub(k))ﬁ’

where 3 represents the inverse decision temperature.
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Using the same set of priors for the model parameters as in the initial study (31) ,
maximum-a-posteriori (MAP) estimates of model parameters were obtained using the

HGF toolbox version 3.0 (http://www.translationalneuromodeling.org/tapas).

We used family-level inference(45) to determine (i) the most likely class of perceptual
models, combining across all response models, and (ii) the most likely class of response

models, combining across all perceptual models.

Model comparison reproduced previous findings (20, 31), showing that the three-level
HGF outperformed competing perceptual models in explaining choice behaviour in the
two studies (Tables S1 and S2) and that participants used both (social) advice and (non-

social) cues to predict the outcome and infer the adviser’s current intentions.

General Linear Model

Following Bayesian model comparison, we extracted the trajectories of the
computational quantities from the winning model and entered them into a subject-
specific design matrix. To identify fMRI or EEG correlates of PEs and precisions, we used
a model with the computational variables as explanatory variables. This GLM was used
to explain either voxel time-series (fMRI study) or observed ERP responses at the single

trial level, over channels and peristimulus time (EEG study).

For the fMRI study, the following regressors (plus their temporal and dispersion
derivatives) were included in the model (Figure 2A); these were event-related regressors
of the outcome presentation, parametrically modulated by the respective

computational quantity:

1. Outcome x Cue PE (§; in Equation 6);

2. Outcome x Advice PE (§; in Equation 2);

3. Outcome x Outcome PE (6, in Equation 7);

4. Outcome x Advice precision (7, in Equation 9).

5. Outcome x Volatility PE (&, in Equation 10).

6. Outcome x Volatility Precision (75 in Equation 1).
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The same subject-specific design matrix was constructed for the EEG study with all

events time-locked to the outcome presentation.

At the second (group) level, we used a standard summary statistic approach(46) to test
the null hypothesis that the first-level parameter estimate of interest was zero across
subjects, at any given voxel (fMRI) or at any given sensor and peristimulus time point
(EEG). This produced a group-level SPM of the F-statistic of PE or precision effects. We
used Gaussian random field theory (47) to perform whole-brain family-wise error (FWE)
correction at the cluster-level (p<o.05) under a cluster-defining threshold (CDT) of
p<o.o01 that ensures valid inference(48, 49). For EEG, the different SPMs were then
summarised using a combined maximum intensity projection map of significant
activations, at each point in peristimulus time and over posterior-to-anterior and left-

to-right scalp locations, respectively (Figure 3).

Furthermore, to link the single-trial EEG results at the sensor level to our fMRI results
and determine the cortical sources of the different computational quantities, we applied
multiple sparse priors (MSP) source reconstruction (23) to the grand-averaged
parameter estimate trajectories () over within-trial time, obtained from solving the
ordinary least squares (OLS) equation associated with our sensor-level GLM. Each
estimated  waveform reflected the unique contribution of each regressor
(computational variable) in explaining the data while factoring out the effects of the
other regressors contained in the design matrix. Thus, we obtained six § waveforms at
each electrode and within-trial time point for each subject, reflecting the contribution
of each computational variable included in the design matrix. Since these waveforms
were produced by a linear transformation of the original trials, they could be subjected
to conventional source reconstruction. Source reconstruction was applied to the grand-
average waveforms while restricting the sources with a mask computed from the
corresponding fMRI contrast, so that only sources appearing in fMRI were allowed to
explain the ERP data. The fMRI masks were binary and included all clusters of voxels
that survived whole-brain FWE correction at the cluster-level (p < 0.05) under a CDT of
p < 0.001 at the voxel level based on GRF theory (22). Out of the sources representing

the computational variables in voxel space (Figure 2B), we isolated the region explaining
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the largest percent variance in the EEG signal at the peak identified by the single-trial

EEG analysis (Figure 3).
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Figures and Legends:

Figure1
Social Learning Experimental Paradigm:
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Figure 1

(A) Healthy volunteers (fMRI: N=47; EEG: N=48; all male) took part in an advice-taking game
for monetary rewards. “Players” predicted the outcome of a binary lottery whereas “Advisers”
advised Players on which option to choose. Each Player interacted with one (randomly
assigned and pre-recorded from a previous interactive version of the task) Adviser during the
entire game. Both roles were incentivized with monetary rewards, and the incentive structure
differed to ensure the presence of different learning phases, including both collaboration and
competition between the two participants. For the Players, the incentive structure remained
stable across time. Players benefited from the Adviser’s recommendations as Advisers always
received more information about the outcome of the lottery (constant probability of 80%).
However, the Advisers’ motivation to provide valid or misleading information varied during
the game as a function of their own incentive structure. Importantly, Players were (truthfully)
informed that the adviser had his own undisclosed incentives and thus his intentions could
change during the game. (B) Within-trial timeline of this social learning and inference task
during neuroimaging (fMRI and EEG). Video clips of the Advisers were presented for 2

seconds.

Page 24 of 34



Computational Hierarchy in Cortex

Figure 2
Computational hierarchy and Associated fMRI Activations:
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(A) The HGF model of the present task predicts that three types of (low-level) PEs and
precison are computed first (with no specified order amongst them): (i) the cue-related PE,
the difference between the actual outcome and the outcome predicted by the cue (pie chart);
(ii) the advice PE, the discrepancy between the actual accuracy of the advice (correct or
misleading) and the participant’s expectation of its accuracy; (iii) the outcome PE, the
difference between actual trial outcome and the outcome as predicted on the basis of the
expected advice accuracy and the cue; (iv) advice precision (the participant’s confidence
about the fidelity of the adviser). The computational quantities that the HGF model predicts
to follow are (v) the volatility PE (which serves to update the estimated volatility of the
adviser’s fidelity), and (vi) volatility precision. See Supplementary Material for mathematical

details.

(B) In fMRI analyses, we used a GLM that included regressors encoding the subject-specific
trial-wise PEs and precisions as predicted by the HGF model. The figure shows the results of
F-tests that report the significance of the different PEs and precisions under whole-brain FWE
cluster-level correction (p < 0.05) with a cluster-defining threshold of p < 0.001. Starting from
the bottom of the hierarchy, (i) the cue-related PE activated the right lingual gyrus, left SPL,

right anterior insula, bilateral caudate, and medial and right dorsolateral PFC; (ii) the advice
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PE activated the bilateral VTA, right anterior TP], left superior parietal lobule, bilateral
anterior insula, ACC, and dorsomedial PFC; (iii) the outcome PE activated the bilateral
superior occipital gyrus, striatum, ACC, left anterior insula, and bilateral medial PFC; (iv) the
advice precision activated the bilateral ACC, posterior cingulate cortex, putamen, and
superior frontal gyrus/SMA; (v) the volatility PE activated the bilateral superior frontal gyrus
and dorsal ACC, and (vi) the volatility precision activated the bilateral middle cingulate gyrus,

ventromedial PFC, right posterior STS and right precentral gyrus.
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Figure 3
Temporal Evolution of the Computational Hierarchy from EEG:
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Figure 3

For the EEG analyses, we used a GLM that included regressors representing the subject-
specific trial-wise PEs and precisions as predicted by the HGF model. This GLM was used to
explain observed event-related potential (ERP) responses at the single trial level, over
channels and peristimulus time. We used F-tests to obtain a statistical parametric maps
(SPMs) that represented the effect of each PE and precision quantity on evoked responses
over all channels and peristimulus time points. These SPMs were thresholded using whole-
volume FWE cluster-level correction (p < 0.05) with a cluster-defining threshold of p < 0.001.
This procedure was performed separately for each PE and precision quantity, and the
significant effects were combined in a single (color-coded) figure that shows the maximum
intensity projections (MIPs) over posterior to anterior and right to left channels, respectively.
Time is with respect to outcome onset. The temporal order of activity evoked by the different
computational quantities precisely matches the sequence of hierarchical Bayesian inference

processes as prescribed by the HGF; compare Figure 2A.
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Figure 4
Source Extraction Using fMRI Spatial Priors:
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Figure 4

Multiple sparse priors (MSP) source reconstruction and source extraction of the
computational representations based on spatial priors from fMRI study (see Figure 2). Time
is with respect to outcome onset. The significant time-points of the model-based EEG results
at the sensor level (see Figure 3) are highlighted in gray and the peak effects for each

computational quantity are marked in red.
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Supplementary Material:
Figure S1:

Hierarchical structure of the model space: perceptual models, response models,

specific models:
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Figure S1

The models considered in this study have a 3 x 2 x 2 factorial structure. The specific models
at the bottom represent individual models of social learning in which both social and non-
social sources of information are considered. The nodes at the highest level represent the
perceptual model families (three-level HGF, reduced no-volatility HGF and RW). Two
response models were formalized under the HGF model: decision noise in the mapping of
beliefs to decisions either (1) depended dynamically on the estimated volatility of the adviser’s
intentions (‘Volatility’ model) or (2) was a free parameter over trials (‘Decision noise’ model).
At the second level, the response model parameters can be divided further according to the
weighing of social and non-social information—these models assume that participants’
predictions are based on (1) both cue and advice information and (2) advice, or (3) cue

probabilities (pie chart) only. [reprinted from Diaconescu et al., 2014].
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Table S1

A. Results of Bayesian model selection (EEG Study): protected exceedance
probabilities (xp)

HGF .
HGF Decision 1NO volatllltyRW
Volatility njoise HGF
Cue & Advice
0.9306 0.002 0.002 0.0576
Advice 0.0052 0.002 0.0003 0.0003
Cue o 0 0 0

B. Family-level inference (EEG Study: perceptual model set): Posterior model
probability or p(r|y) and exceedance probabilities (xp)

HGF No Rescorla-
Volatility | Wagner
HGF
p(rly) 0.9599 0.0249 0.0152
Xp 1 0 0

C. Family-level inference (EEG Study: family model set): Posterior model
probability or p(r|y) and exceedance probabilities (xp)

Integrated | Reduced: | Reduced:
Advice Cue
p(rly) 0.9857 0.0123 0.0020
Xp 1 0 0
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Table S2

A. Results of Bayesian model selection (fMRI Study): protected exceedance
probabilities (xp)

HGE HGF No
... Decision vyolatility RW
Volatility ngige HGF
Cue & Advice
0.9361 0.0409 0.0001 0.0002
Advice 0.02 0.0027 o o
Cue 0 0 0 0

B. Family-level inference (fMRI Study: perceptual model set): Posterior model
probability or p(r|y) and exceedance probabilities (xp)

HGF No Rescorla-
Volatility | Wagner
HGF
p(rly) 0.8818 0.0299 0.0883
Xp 1 0 0

C. Family-level inference (fMRI Study: family model set): Posterior model
probability or p(r|y) and exceedance probabilities (xp)

Integrated | Reduced: | Reduced:
Advice Cue
p(rly) 0.8482 0.15 0.0018
Xp 1 0 o)
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Table S3

Montreal Neurological Institute (MNI) coordinates and F-values of maxima of fMRI
activations by the 6 key computational quantities which were significant under whole-
brain family-wise error (FWE) correction at the cluster-level (p<o.05; with a cluster-
defining threshold of p<o0.001). Related to Figure 2.

Hemisphere x 'z F
1. Cue-related PE |

superior medial PFC R |6 [36 136 [53.46

anterior insula \

dorsolateral PFC R |42 |6 146 [3176

caudate |
superior parietal lobule
anterior insula \
angular gyrus R 140 [-50146 |2579
superior parietal lobule |
precuneus R |14 |-7846 2405 |

caudate |

lingual gyrus R |4 [-60]12 [2216 |

lingual gyrus |

Hemisphere x 'z F
2. Advice PE ‘
anterior insula
anterior insula ‘

dorsomedial PFC (R o [16 |54 [4324 |

superior parietal lobule ‘

dorsolateral PFC R [48 |18 |4 |48 |

anterior cingulate cortex

superior frontal cortex

caudate L [8 [2 [0 [2608 |
ventral tegmental area/substantia

nigra

ventral tegmental area/substantia

nigra

Hemisphere x
3. Outcome PE
caudate L 8 18 ]2 [345 |
superior medial frontal gyrus |
cuneus
anterior cingulate gyrus
superior occipital gyrus
anterior cingulate gyrus
SMA
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superior frontal gyrus k] | 56|

Hemisphere x 'z F
4. Advice Precision \

supplementary motor area R [6 |8 [so [3073 |

supramarginal gyrus ‘

temporal parietal junction R 146 |52 |28 [3506

supplementary motor area

putamen (R J22 | |4 (372 |
medial prefrontal cortex

putamen

posterior cingulate cortex

5. Volatility PE

anterior cingulate cortex
anterior cingulate cortex
superior frontal gyrus

Hemisphere x
6. Volatility Precision

superior temporal sulcus

insula

middle temporal gyrus R 52 | 6218 [3269

middle temporal gyrus |

parahippocampal cortex

angular gyrus

angulargyrus
middle cingulate cortex R 4 |2 |42 [2383 |

middle cingulate cortex |

temporal parietal junction [N TN EVEEVEETVVAN

supramarginal gyrus
ventromedial PFC
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