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ABSTRACT
BACKGROUND: Psychopathy has repeatedly been linked to disturbed associative learning from aversive events (i.e.,
threat conditioning). Optimal threat conditioning requires the generation of internal representations of stimulus–
outcome contingencies and the rate with which these may change. Because mental representations are imperfect,
there will always be uncertainty about the accuracy of representations in the brain (i.e., representational
uncertainty). However, it remains unclear 1) to what extent threat conditioning is susceptible to different types of
uncertainty in representations about contingencies during the acquisition phase and 2) how representational
uncertainty relates to psychopathic features.
METHODS: A computational model was applied to functional neuroimaging data to estimate uncertainty in repre-
sentations of contingencies (CoUn) and the rate of change of contingencies (RUn), respectively, from brain activation
during the acquisition phase of threat conditioning in 132 adolescents at risk of developing antisocial personality
profiles. Next, the associations between these two types of representational uncertainty and psychopathy-related
dimensions were examined.
RESULTS: The left and right amygdala activations were associated with CoUn, while the bilateral insula
and the right amygdala were associated with RUn. Different patterns of relationships were found between
psychopathic features and each type of uncertainty. Callous-unemotional traits and impulsive-irresponsible
traits uniquely predicted increased CoUn, while only impulsive-irresponsible traits predicted increased
RUn.
CONCLUSIONS: The findings suggest that 1) the insula and amygdala differ in how these regions are affected by
different types of representational uncertainty during threat conditioning and 2) CoUn and RUn have different patterns
of relationships with psychopathy-related dimensions.

Keywords: Amygdala, Computational modeling, Fear conditioning, Insula, Psychopathy, Representations, Threat
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In a dynamic world, success relies heavily on our ability to
adapt our behavior to avoid aversive outcomes. Threats have a
large impact on the modulation of our behavior (1). One
developmental condition that has repeatedly been linked to
diminished learning from aversive experiences is psychopathy
(2,3), which encompasses callous-unemotional traits (e.g.,
blunted affect, lack of empathy or remorse), a grandiose-
manipulative interpersonal style (e.g., dishonesty, superficial
charm, lying, manipulation of others), and impulsive-
irresponsible behavioral tendencies (e.g., thrill seeking, lack
of impulse control) (4). Adolescents with high levels of
psychopathic traits are at increased risk of engaging in anti-
social behavior (5) and may be more difficult to treat because
of their more severe antisocial behavior and diminished treat-
ment responsivity (6). The maladaptive behavior seen in
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psychopathy is thought to be strongly influenced by disturbed
learning from aversive events, such as threats (i.e., threat
conditioning) (7–9), which is reflected in abnormal physiolog-
ical and brain responses in both psychopathic adults (7–9) and
youths with severe antisocial personality profiles (10,11).

Threat conditioning is multifaceted, and learning relies on
interacting cognitive computations, similar to other forms of
associative learning (12,13). Learning which stimuli are
threatening requires accurate representations of threat con-
tingencies. To maintain accurate representations of contin-
gencies, we need to update the representations continually
after each observation, also taking into account that the
learned contingencies may change. However, our observa-
tions are imperfect (14). Therefore, there will always be
some uncertainty regarding the accuracy of the cognitive
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representations (i.e., representational uncertainty)1 that are
generated based on these imperfect observations (15).
Learning about contingencies involves generating represen-
tations based on our estimates of the likelihood that contin-
gencies will change and of the rate at which these changes
occur (13). Because these representations are imperfect, there
will be uncertainty about the accuracy of the representation of
contingency changes (i.e., contingency uncertainty [CoUn])
and of the rate at which changes occur (i.e., change rate un-
certainty [RUn]) (16). Empirical evidence indicates that these
two types of representational uncertainties are hierarchically
related because the rate at which changes in contingencies are
perceived to occur will influence our belief about the overall
likelihood that the contingencies will change (13,15). Further-
more, a recent study showed that beliefs about each type of
uncertainty play key roles in modulating physiological
responses to threats (17). Importantly, effective learning
requires cognitive uncertainty to be minimized (18). Therefore,
it is likely that uncertainty in the representation of contin-
gencies may also play a role in understanding the impairments
in threat conditioning seen in psychopathy.

Threat conditioning in psychopathy has often been investi-
gated in case-control studies in which groups of individuals
scoring high on psychopathic features are compared with a
low- scoring group [e.g., (7,11)]. In one of the few threat con-
ditioning studies employing a dimensional approach to psy-
chopathy, Cohn et al. (19) reported a positive relationship
between blood oxygen level–dependent (BOLD) activation in
the amygdala and the insula (during acquisition learning) and
impulsive-irresponsible traits in at-risk adolescents but
reported a negative correlation between callous-unemotional
traits and BOLD activation in these regions. Other studies
using physiological measures have found a similar negative
relationship between threat conditioning and fearless domi-
nance (a construct that overlaps with callous-unemotional
traits) but no correlation with impulsive-antisociality in
undergraduates (20) and reduced threat conditioning in adult
psychopathic individuals scoring high on interpersonal-
affective deficits (21). Taken together, the evidence points
toward decreased threat conditioning in individuals high on
callous-unemotional traits, while the findings are mixed for the
impulsive-antisocial features. However, these prior studies
have approached threat conditioning as a unitary form of
learning without taking the multifaceted nature of associative
learning into account. As a consequence, how psychopathy
may be related to any of the various interacting cognitive
computations that subserve acquisition learning during threat
conditioning has been overlooked. Systematically studying the
integrity of these computations is essential for pinpointing the
1 Note that the operationalization of uncertainty used in this study
differs from other definitions of the term. Neuroimaging studies
have primarily focused on how uncertainty due to unsure out-
comes is processed in the brain [e.g., (48,49)], whereas we
examined the uncertainty about the accuracy of cognitive
representations of change. In other words, our definition of
uncertainty in this study refers to the inaccuracy in represen-
tations that are formed, which is driven by imperfect observa-
tions in addition to uncertain outcomes.
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deficiencies in the threat conditioning mechanism in
psychopathy.

In this study, we examined whether the threat conditioning
impairments seen during the acquisition phase in relation to
psychopathy may be partly attributed to increased uncertainty
in representations of contingencies and their rate of change.
Importantly, because the uncertainty computations are latent,
it is impossible to directly quantify them without employing
computational modeling approaches. A computational model
was applied to the large functional magnetic resonance im-
aging (fMRI) dataset collected by Cohn et al. (19) to quantify
uncertainty in the representations of contingency change and
the rate of change in target brain areas during threat condi-
tioning. The right and left amygdala and insula, respectively,
were chosen as regions of interest (ROIs) because 1) these
areas consistently show activation during threat conditioning
across studies (22), 2) these areas show relatively large
responses to uncertainty about threat contingencies (23,24),
3) these areas are linked to learning impairments in psychop-
athy (25), and 4) we aimed to maintain comparability with the
very few previous studies on psychopathy dimensions and
threat conditioning. Importantly, because two types of repre-
sentational uncertainties were quantified, it was unlikely that all
ROIs showed an equal amount of CoUn and RUn. To take
account of this, we subsequently used Bayesian structural
equation modeling (BSEM) to examine which of the ROIs was
more affected by each type of representational uncertainty and
determined how psychopathy-related personality dimensions
uniquely predicted CoUn and RUn.

Extant findings suggest that threat conditioning is reduced
in individuals scoring high on callous-unemotional features,
and we hypothesized that this learning impairment should be
linked to increased representational uncertainty in these in-
dividuals. This is based on the premise that disturbed learning
should be related to a failure in reducing uncertainty in the
information processed in the brain [cf. (25)]. But given that we
sought to obtain a higher level of precision by parsing repre-
sentational uncertainty into CoUn and RUn for the first time, it
is difficult to predict which type of uncertainty is related to
the impairments seen in those with elevated levels of callous-
unemotional traits. The findings for the impulsive-irresponsible
dimension are mixed, but the hyperconditioning found by Cohn
et al. (19) suggests that elevated impulsive-irresponsible traits
should be linked to reduced representational uncertainty dur-
ing threat conditioning.

METHODS AND MATERIALS

Participants and Assessment

Participants were recruited from a Dutch cohort of 364 ado-
lescents who were first arrested by the Dutch police before 12
years of age, all of whom had participated in three previous
waves of a longitudinal study (26). The mean age at study
entrance was 10.9 years (SD = 1.4). All participants were
assessed using the Dutch Youth Psychopathic Traits Inventory
(YPI) (27), a valid and reliable 50-item self-report instrument
developed to assess psychopathic traits in juvenile community
samples (28). In the current study, internal consistency of the
total score and its constituting dimensions was good to
excellent; Cronbach’s a was .93 for the total score and was
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.86, .89, and .85 for the callous-unemotional, grandiose-
manipulative, and impulsive-irresponsible scales, respectively.

For the current study, data were reanalyzed from a sub-
sample characterized by a wide range of externalizing risk (N =
150) with an even distribution of participants at low risk, me-
dium risk, and high risk of antisocial behavior. Of this sample,
18 participants were excluded from analyses due to invalid
MRI data (n = 9), invalid task performance (n = 6), drug use
prior to scanning (n = 2), or missing questionnaire data (n = 1).
Analyses were performed on the remaining 132 participants
(mean age = 17.7 years, SD = 1.6) (see Supplement).

Procedure

This study was approved by the Institutional Review Board of
the VU University Medical Center Amsterdam. All participants
and their parents/custodians (if participants’ age was under 18
years) signed for informed consent. Participants underwent a
neuroimaging protocol in a Philips 3T Intera MRI scanner
(Philips Healthcare, Best, The Netherlands) at the VU University
Medical Center Amsterdam. All participants were instructed to
refrain from using alcohol, cannabis, or psychostimulant
medication for at least 24 hours before the MRI scan.

Threat Conditioning Task

A classical differential delay threat conditioning task was
employed (7). Pictures of two neutral male faces served as
conditioned stimuli (CS), one of which (chosen at random
during each experiment) was consistently paired with an
aversive electric unconditioned stimulus (US) at the end of a
10-second viewing period (CS1; 100% reinforcement) during
the acquisition period, while the other picture (CS2) was never
followed by a US. The acquisition period, which consisted of
eight trials of each CS, was preceded by a habituation phase
during which CSs were presented four times each for 3.5
seconds without a US and was followed by an extinction
phase during which CSs were presented four times each for 7
seconds and were not followed by a US either.

fMRI Protocol

T1-weighted anatomical scans (180 slices, 1mm3 voxels, field of
view = 2563 256 mm, repetition time = 9.0 ms, echo time = 3.5
ms) were acquired using an 8-channel SENSE head-coil (Philips
Healthcare). Furthermore, 400 T2*-weighted axial echo-planar
images were acquired during threat conditioning (38 slices,
3-mm thickness, 2.29 3 2.29 in-plane resolution, field of view =
2203 220 mm, repetition time = 2300 ms, echo time = 30 ms).

Statistical Analyses

fMRI data were processed using SPM8 (Wellcome Trust
Centre for Neuroimaging, University College London, London,
UK), including realignment, unwarping, slice-time correction,
normalization to Montreal Neurological Institute space based
on the segmented anatomical scan, and 8-mm full width at half
maximum smoothing. First-level models included separate
regressors for CS1/2 and CS2 acquisition, US, and rating
blocks. During acquisition, the first 5 seconds of each trial was
modeled separately from the remainder of the trial (5 seconds)
to account for fast within-trial habituation of threat neuro-
circuitry, focusing analyses on the first epoch only during
Biological Psychiatry: Cognitive Neuroscien
acquisition (19). Realignment parameters were also included in
first-level models to account for movement effects. Next,
average neural response estimates for each ROI were extrac-
ted using the MarsBaR toolbox for SPM (29). Following pre-
vious work (23,30), we focused analyses on the amygdala and
the insula. The amygdala and insula were anatomically defined
using the Automated Anatomic Labeling atlas (31).

Computational Modeling

To model how activity in the ROIs responded to CS in the
experiment, the activation trajectory of the principal eigen-
variate was extracted for each ROI. This trajectory was then
analyzed using the hierarchical Gaussian filter (HGF) (15). The
HGF is a generic hierarchical Bayesian time series model that
explains a time series as a sequence of noisy observations of a
hidden state. Crucially, the HGF also models the dynamics of
change (i.e., volatility) of the hidden state explicitly and gives
one-step update equations for the evolving estimate of both
the hidden state and its volatility. This evolving estimate is a
probability distribution referred to by us as a belief. In the HGF,
beliefs follow a normal distribution and are fully specified by
their mean and variance. The mean of the belief represents the
most probable value of the hidden state, and the variance
represents the uncertainty.

More formally, the HGF consists of a hierarchy of Gaussian
random walks where the variance of each walk is a function of
the value at the next higher level. Because the variance of its
walk determines a quantity’s likelihood of changing, each value
but the one at the base of the hierarchy represents the volatility
of the next lower level. In the current study, we used a two-
level HGF where the first level represents the BOLD activa-
tion in a given brain region and the second level is the volatility
of that activation (Supplemental Figure S1). We applied the
HGF to the measured BOLD activation (represented as u in the
HGF model graph of Supplemental Figure S1) to infer the latent
true activation at the time of measurement and its volatility
along with the posterior uncertainty about these quantities.
This resulted in two estimated belief trajectories for each
subject and ROI: that of the BOLD activation (x1 in the HGF
hierarchy; see Supplemental Figure S1) and that of its volatility
(x2 in the HGF hierarchy; see Supplemental Figure S1). Each of
the two belief trajectories consisted of a mean trajectory
(m1 regarding x1 and m2 regarding x2) and a variance (i.e., un-
certainty) trajectory (s1 and s2). Crucially, this means that every
observed update implies a certain level of uncertainty, and by
observing the evolution of the BOLD signal in the ROIs during
threat conditioning, we can infer the evolution of the uncer-
tainty the brain has about the quantity encoded by the activity
in each ROI. Estimation was performed using the HGF Toolbox
version 3.0 (https://www.tnu.ethz.ch/en/software/tapas.html),
and fits could be obtained for all subjects and ROIs. All HGF
modeling was performed before the BSEM described below,
and all hyperparameters of the HGF analysis (number of levels,
noise level, and regularizing priors) were chosen only in terms
of this analysis.

Bayesian Structural Equation Modeling

To assess which brain areas were substantially affected by
representational uncertainty during threat conditioning in a
ce and Neuroimaging - 2017; -:-–- www.sobp.org/BPCNNI 3
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data-driven fashion, we employed BSEM to determine 1) which
ROIs were involved in coding CoUn and RUn and 2) which
psychopathy-related dimensions predicted each type of
representational uncertainty. First, mean uncertainty estimates
for learning were created by averaging and subtracting the
uncertainty trajectories of CS2 trials from those of the CS1
trials in each ROI, yielding four average scores representing the
additional uncertainty found in the CS1 condition relative to
the CS2 condition for CoUn and RUn, respectively. In partic-
ular, the CoUn score was the mean of the uncertainty (i.e.,
variance s1) at the bottom level of the HGF hierarchy during the
CS1 condition minus the mean of the same uncertainty s1
during the CS2 condition. Correspondingly, the RUn score
was the mean of the uncertainty (i.e., variance s2) at the sec-
ond level of the HGF hierarchy during the CS1 condition minus
the mean of the same uncertainty s2 during the CS2 condition.
Note that this subtraction method is the common approach
used to obtain BOLD responses reflecting conditioning but
that we used only the uncertainty estimate derived from the
BOLD signal instead of the raw BOLD signal. Next, a BSEM
was built where the four average CoUn estimates were loaded
on a latent factor, which was regressed on the scores of the
callous-unemotional, grandiose-manipulative, and impulsive-
irresponsible scales of the YPI. The same procedure was fol-
lowed for the estimates of RUn.

The analyses were conducted in Mplus version 7.4 (32)
using a Bayesian estimator (PX1) with five Markov chain
Monte Carlo chains and 100,000 iterations. The first half of the
iterations was discarded (i.e., burn-in trials), and model fit was
determined using different indexes for Bayesian testing: 1) a
chi-square test for posterior predictive checking and 2) the
posterior predictive p value (PPP value). Convergence of the
Markov chain Monte Carlo chains was established with
Gelman–Rubin’s potential scale reduction factor (33). In gen-
eral, a good fit is indicated by a 95% credibility interval (CI) for
the chi-square posterior predictive check that includes the
value 0; the PPP value should approach the value 0.50, and
convergence is achieved when the potential scale reduction is
below 1.05 (32). Significance of the regression weights was
determined based on the 95% CIs of the Bayesian posterior
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
distributions, and variables with 95% CIs not containing the
value 0 were considered as significant.

RESULTS

After creating the mean difference scores between the CS1
and CS2 conditions for CoUn and RUn, respectively, the mean
difference scores were used as outcome variables in the
BSEMs. The first BSEM included each subject’s mean CoUn
estimates in the right and left amygdala and insula, respec-
tively, loaded on a latent factor that was in turn regressed on
the YPI scales. This model had very good fit (95% CI 219.22
to 25.35, PPP = .38) and indicated that the left and right
amygdala loaded significantly on the latent factor capturing
CoUn and that the callous-unemotional (b = .45, 95% CI 0.21
to 0.72) and impulsive-irresponsible (b = .27, 95% CI 0.05 to
0.51) scales were significant positive predictors of the latent
factor (Figure 1). The grandiose-manipulative scale was not a
significant predictor (b = .10, 95% CI 20.15 to 0.35). This
procedure was repeated for change rate uncertainty in the four
ROIs loaded on a latent factor measuring RUn that was
regressed on the three YPI scales. This model also had a very
good fit (95% CI 227.52 to 17.17, PPP = .67). The results
showed that the left and right insula and the right amygdala
loaded significantly on the latent factor and that the impulsive-
irresponsible scale predicted the latent variable for RUn
(b = .29, 95% CI 0.07 to 0.49) (Figure 2). The callous-
unemotional (b = 2.02, 95% CI 20.25 to 0.21) and
grandiose-manipulative (b = 2.12, 95% CI 20.35 to 0.12)
scales were not significant predictors.

DISCUSSION

This study is the first to provide direct quantifications of
different types of representational uncertainty in the brain
during threat conditioning in a large sample of adolescents at
risk of developing persistent antisocial behavior. The findings
show that a significant level of CoUn can be found in the left
and right amygdala during threat conditioning, while the right
amygdala and the left and right insula are more responsive to
RUn. The mapping of these brain responses onto different
Figure 1. Structural equation model depicting the
relationships among the Youth Psychopathic Traits
Inventory (YPI) scales measuring callous-
unemotional (YPI-CU), grandiose-manipulative
(YPI-GM), and impulsive-irresponsible (YPI-II) traits
and a latent factor representing the amount of
perceptual uncertainty concerning contingencies, as
estimated from the blood oxygen level–dependent
signal trajectories. Only the left amygdala (L-Amy)
and the right amygdala (R-Amy) loaded significantly
on this latent factor. To increase readability,
nonsignificant loadings are not depicted. Solid
arrows represent significant unique correlations,
dashed arrows represent nonsignificant effects, and
dotted arrows represent factor loadings.
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Figure 2. Structural equation model depicting the
relationships among the Youth Psychopathic
Traits Inventory (YPI) scales measuring callous-
unemotional (YPI-CU), grandiose-manipulative
(YPI-GM), and impulsive-irresponsible (YPI-II) traits
and a latent factor representing perceptual uncer-
tainty concerning the change rate of contingencies,
as estimated from the blood oxygen level–
dependent signal trajectories. The left insula (L-Ins),
right insula (R-Ins), and right amygdala (R-Amy)
loaded significantly on this latent factor. To increase
readability, nonsignificant loadings are not depicted.
Solid arrows represent significant unique correla-
tions, dashed arrows represent nonsignificant
effects, and dotted arrows represent factor loadings.
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dimensions of psychopathy indicated that both callous-
unemotional and impulsive-irresponsible traits were uniquely
related to CoUn, while only impulsive-irresponsible features
were positively linked to RUn (Figures 1 and 2).

Our results in an at-risk population are in line with those
obtained in healthy samples, indicating that the amygdala
(23,34) and the insula (24) are involved in processing uncer-
tainty related to threat contingencies. Our results significantly
advance this knowledge by specifying how activation in the
insula and amygdala is related to uncertainty about the accu-
racy of different aspects of contingency representation. The
amygdala seems to be particularly sensitive to CoUn during
threat conditioning, but it also encodes a relatively high
amount of RUn together with the insula. Given the hierarchical
relationship between RUn and CoUn in our computational
framework (13,15), these results converge with the suggestion
that the insula passes information concerning aversive stimuli
to the amygdala during threat conditioning (35). One tentative
interpretation of the general pattern of results is that the
interaction between the insula and the amygdala during threat
conditioning might reflect a circuit in which the insula is pri-
marily responsive to RUn and the information is then relayed to
the right amygdala, which would then function as a point of
entry, to inform computations taking place in the right and left
amygdala that are related to the estimation of the likelihood
that contingency changes occur. This proposal would also be
consistent with the general notion that the insula relays so-
matosensory information to other areas to initiate adaptive
responses (36).

Regarding the link with psychopathy, callous-unemotional
and impulsive-irresponsible traits predicted increased CoUn
in the amygdala. Because associative learning relies on suc-
cessful reduction of uncertainty (15), heightened levels of un-
certainty in the cognitive computations that are engaged
ultimately should lead to reduced learning (18). In agreement
with this prediction, Cohn et al. (19) reported a negative rela-
tionship between BOLD activation and callous-unemotional
traits during threat conditioning in the dataset used in the
current study, pointing toward mechanistic disturbances in
threat conditioning (20,21). Our findings further specify one
aspect of the mechanism that seems impaired in individuals
Biological Psychiatry: Cognitive Neuroscien
with high levels of callous-unemotional traits, who seem to
form more uncertain (i.e., less accurate) representations of
contingency changes in the amygdala, while representations of
change rate in the insula are relatively accurate.

Cohn et al. (19) also found a positive unique correlation
between impulsive-irresponsible traits and BOLD signal during
threat conditioning. This positive relationship, indicating
enhanced learning from threats in those with increased levels
of impulsive-irresponsible traits, was expected to be related to
reduced representational uncertainty (i.e., more accurate rep-
resentations) in the current study. Instead, we found that
impulsive-irresponsible traits were positively linked to
increased RUn and CoUn in contingency representations.
Given these results, it seems plausible that there is a broader
deficiency in forming representations concerning change in
individuals scoring high on impulsive-irresponsible traits during
threat conditioning, while the deficiency is limited to CoUn in
those scoring high on callous-unemotional traits. However,
representational uncertainty does not seem to be sufficient for
explaining the enhanced threat conditioning seen with elevated
impulsive-irresponsible traits (19). Therefore, it should be
considered whether an additional mechanism could be inter-
acting with the threat conditioning processes in this sample of
at-risk adolescents. One possibility is that the insula and the
amygdala are hypersensitive to aversive information in
impulsive-irresponsible individuals. This interpretation builds
on the previous finding that higher perceived uncertainty
sensitizes the insula and amygdala to aversive information
(23,24,34), presumably leading to exaggerated aversive
responding in these regions. Thus, more representational un-
certainty during aversive learning may be interacting with a
bias toward exaggerated affective responding in the amygdala
in individuals with high levels of irresponsible-impulsive fea-
tures, while this bias might not be present in individuals with
elevated callous-unemotional traits. One tentative prediction
that follows is that impulsive-irresponsible individuals should
also show exaggerated responses during extinction learning
because the hypersensitization of the amygdala after threat
conditioning combined with excessive representational un-
certainty should interfere with the unlearning of contingencies
during extinction. Obviously, this proposal is made with care
ce and Neuroimaging - 2017; -:-–- www.sobp.org/BPCNNI 5

http://www.sobp.org/BPCNNI


Representational Uncertainty and Psychopathy
Biological
Psychiatry:
CNNI
because we did not quantify amygdala bias in the current
study and also because threat extinction has yet to be studied
using a dimensional approach to psychopathy instead of
group comparisons (11,37).

Interestingly, our findings also suggest that representational
uncertainty could play an important role in explaining other
learning impairments found in antisocial populations such as
disturbed passive avoidance (38,39) and reversal learning
(40,41). During reversal learning, for example, we learn that a
stimulus previously associated with reward now may lead to
negative outcomes, which requires us to adapt our beliefs and
behavior to avoid negative consequences. Importantly, the
change in stimulus–outcome associations introduces repre-
sentational uncertainty about the contingencies and their rate
of change, which affects how well and how fast we learn the
new contingencies. From this perspective, the reversal learning
impairment found in children (41) and adults (3,40,42) with
psychopathic tendencies could reflect suboptimal manage-
ment of representational uncertainty, similar to what we found
in the current study. In line with this prediction, Budhani and
Blair (41) found that the reversal learning impairment in boys
with psychopathic tendencies got worse as the saliency of the
contingency changes decreased. Such a reduction of saliency
increases ambiguity and uncertainty about the contingencies,
so their results suggest that increased CoUn may play a sig-
nificant role in the reversal impairment. Future studies should
try to confirm this expectation and determine the impact of
representational uncertainty on reversal learning.

One critique of the current study could be that our task did
not include a manipulation of uncertainty given that the aver-
sive stimulus was always associated with the same neutral
face during learning, which would make it clear when to expect
the aversive stimulus. This argument stems from the issue that
quantifying the impact of uncertainty on threat conditioning is
not possible using traditional analytical approaches, thereby
requiring the manipulation of uncertainty through the experi-
mental task in blocked designs. However, the computational
model used in the current study overcomes this limitation in
that it directly quantifies the level of uncertainty about contin-
gencies on a trial-by-trial basis. Therefore, the impact of un-
certainty on the cognitive operations involved in learning can
be measured without introducing drastic changes in contin-
gencies through task design. Another potential issue is the
possibility that the increased RUn in the insula found in those
with elevated impulsive-irresponsible tendencies could be
driven by a more general impairment in the integration of
multiple sources of information used to generate contingency
representations during threat conditioning (43,44). The insula
can be seen as a processing hub implicated in various
cognitive operations that include representations of pain,
contextual appraisal, and general uncertainty (36). Thus, it is
possible that increased RUn is a consequence of inaccurate
lower level representations in the insula such as those per-
taining to the pain stimulus. Such an account would also be in
line with studies on reinforcement-based decision making
in adolescents with conduct problems who show impairments
in generating accurate representations of expected value in the
insula (39,45). Together, these caveats and novel hypotheses
highlight the need for further studies that focus on the
interaction among personality dimensions, representational
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
uncertainty, and their neural correlates during threat condi-
tioning and other forms of associative learning.

In conclusion, the current study is the first to directly
quantify different kinds of representational uncertainty during
threat conditioning in an at-risk sample of adolescents. The
results highlight the importance of examining how uncertainty
in cognitive representations may be key to understanding
some of the maladaptive characteristics often linked to psy-
chopathy. A more precise understanding of the various
interacting cognitive computations involved in maladaptive
learning may lead to better (neuro)biology-oriented di-
agnostics and the development of targeted treatment ap-
proaches in various conditions showing disturbed associative
learning (46,47).
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