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What the brain is about

 What do our imaging methods measure?

* Brain activity.

e But when does the brain become active?

 When predictions (or their precision) have to be adjusted.

 So where do the brain’s predictions come from?

e  From a model.
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What does this mean for neuroimaging?

If brain activity reflects model updating, we need to
understand what model is updated in what way to

make sense of brain activity.
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The Bayesian brain and predictive coding

Model-based prediction updating is described by Bayes’
theorem.

— the Bayesian brain

Hermann von Helmholtz

This can be implemented by predictive coding.
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Advantages of model-based imaging

Model-based imaging permits us to

* infer the computational (predictive) mechanisms
underlying neuronal activity.

 localize such mechanisms.

 compare different models.
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How to build a model

Fundamental ingredients:

Prediction
Sensory input @ @ Hidden states

e - -

Inference based on
prediction errors
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Example of a simple learning model

Rescorla-Wagner learning:

Learning rate Previous value
(prediction)

pk) = ) Prediction error (0)

Inferred value of x New input

v

/N

p=D 0 u®

June 14, 2015 Model-based imaging, OHBM 2015, Christoph Mathys

Page 7



From perception to action

Agent | World

Sensory input

Generative process

Inversion of perceptual
generative model

Inferred
hidden states

_

Decision model

True
hidden states

Action
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From perception to action

Agent . World

I
I
I
Sensory input @

True

|

|

[
Inferred |

I hidden states

[

|

hidden states

Action |
[

* In behavioral tasks, we observe actions (a).
 How do we use them to infer beliefs (1)?

« Weinvert (i.e.,, estimate) a decision model.
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Example of a simple decision model

* Say 3 options A, B, and C have values vy, = 8, vg = 4, and v, = 2.

 Then we can translate these values into action probabilities via a

«softmax» function:

eﬂvA

p(a - A) - eBva + eBVB + eBvc

 The parameter f determines the sensitivity to value differences
1 1

_B=0.6

B=01

pg)

A B C A B C
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All the necessary ingredients

Perceptual model (updates based on prediction errors)

Value function (inferred state -> action value)

Decision model (value -> action probability)
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Computational model

Reinforcement learning example oonerty etat, 2003)

Choice history of subject

N

(1}

[ [

0 1 1

!

Prediction error
=R+ vV -V

Value update
Vi = Vi +as
Action probabilities

1

Trial-by-trial prediction errors

~ T I e
ANMAWS WA

iy

Trial-by-trial values

ANAYARANGAN

Trial-by-trial action probabilities

P(A) =

1+ erx{vﬂ. - Vg)

Model likelihood

L=2log(P)

TAVALAANLWA

June 14, 2015

Action probabilities

Actual data

Model prediction
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O’Doherty et al. (2003),
Glascher et al. (2010)
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Reinforcement learning example

Significant effects of
prediction error with
fixed learning rate
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Bayesian models for the Bayesian brain

Agent, World

Sensory input @
I
|
Inferred o

hidden states

True
hidden states

Action |

1
p(ulx,9) - p(x,9) « p(x,I|u)
likelihood prior postérior

Includes uncertainty about hidden states.
I.e., beliefs have precisions.

But how can we make them computationally tractable?
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The hierarchical Gaussian filter (HGF): a computationally
tractable model for individual learning under uncertainty

June 14, 2015

State of the

Model

world
P(x5®) ~ N(x;&D,9)
Log-volatilit Gaussian
9 . y random walk with p(x;™)
3 constant step
of tendency size 9 S
xfen
P(x,M) ~ NOGED, exp(kxgtw))
Tendency Gaussian
X, random walk with p(x;%)
towards step size
category “1” exp(kXs+w) >
x.(k-2)
2
_ P(X;=1) = s(X,)
Stimulus P(x,=0) = 1-s(x,)
category Sigmoid trans- ’
X4 formation of x, plx,=1)
(uou Or 5‘1!!) . Xi

0
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HGF: variational inversion and update equations

* Inversion proceeds by introducing a mean field approximation and fitting
quadratic approximations to the resulting variational energies (Mathys et al.,
2011).

* This leads to simple one-step update equations for the sufficient statistics
(mean and precision) of the approximate Gaussian posteriors of the states
Xi.

« The updates of the means have the same structure as value updates in
Rescorla-Wagner learning:

7. Prediction error
[ —2
i
Tt

* Furthermore, the updates are precision-weighted prediction errors.
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Example: Iglesias et al. (2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
HGF3 0.0361 0 0.1404 0 0.1304 0
Sutton 0.0685 0 0.0710 0 0.0761 0
RW 0.0260 0 0.0264 0 0.0769 0
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HGF: adaptive learning rate

Simulation: $=05, w=-2.2, k=14

Posterior expectation My of log-volatility of tendency X,
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Individual model-based regressors

Uncertainty-weighted prediction error o, - 64

4
20 |
L, 0F |
o}

2 i
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Trial number
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Example: Iglesias et al. (2013)

ITI
150/300 ms 2000 500 m;

cue prediction target
300 ms 800/1000/1200 ms

time

Changes in cue strength (black), and
posterior expectation of visual category (red)

1 T T 19

£

200 250 300

0 50 100 150
Trials
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Example: Iglesias et al. (2013)

first fIMRI study second fMRI study conjunction across studies
x=3,y=25z=47 x=0,y=25z=47 x=0,y=25,z=47

Figure 2. Whole-Brain Activations by ¢,

Activations by precision-weighted prediction error about visual stimulus outcome, &5, in the first fMRI study (A) and the second fMRI study (B). Both activation
maps are shown at a threshold of p < 0.05, FWE corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the
results of a “logical AND" conjunction, illustrating voxels that were significantly activated in both studies.
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Example: Iglesias et al. (2013)

-

first IMRI study

June 14, 2015

second ﬂ\M study conjunction

Model-based imaging,

OHBM 2015, Christoph Mathys

z=-18

Figure 3. Midbrain Activation by &,
Activation of the dopaminergic VTA/SN associ-
ated with precision-weighted prediction error
about stimulus category, e,. This activation is
shown both at p < 0.05 FWE whole-brain corrected
(red) and p < 0.05 FWE corrected for the volume of
our anatomical mask comprising both dopami-
nergic and cholinergic nuclei (yellow).

(A) Results from the first fMRI study.

(B) Second fMRI study.

(C) Conjunction (logical AND) across both studies.
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Example: Iglesias et al. (2013)

E second fMRI study

"

”
s

. .
first fMRI study

e

conjunction across studies

Figure 6. Basal Forebrain Activations by &5

Activation of the cholinergic basal forebrain associated with precision-
weighted prediction error about stimulus probabilities e; within the anatomi-
cally defined mask. For visualization of the activation area we overlay the
results thresholded at p < 0.05 PWE corrected for the entire anatomical mask
(red) on the results thresholded at p < 0.001 uncorrected (yellow) in the first {(A:
¥=13,y=9,z=—8)and the second fMRI study (B: x=0,y=10,z=—8). (C) The
conjunction analysis {("logical AND") across both studies (x=2,y=11,2z= —8).
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How to estimate and compare models:
the HGF Toolbox

Available at

http://www.tranlsationalneuromodeling.org/tapas
Interactive demo and manual
Modular, extensible

Matlab-based
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How it's done in SPM

8 00 SPM8& (xm): Menu

Reali... +| | slicetiming | | Smooth |

Coreg... MNorm... 3 |  Segment |

I| Specify 1st-level I | Review

[ Specify 2nd-level | Estimate

Results

Dynamic Causal Modelling
Specify and estimate a dynamic causal model

| Display | | CheckReg | | Re.. | | FMAI 3

PPls ImCalc DICOM Import

Help | | Uutis.. & Batch
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How it's done in SPM

800

Batch Editor

File Edit View SPM
» D d

Module List

BasiclO

Current Module: fMRI mode| specification

fMRI model specification
Model estimation E
Contrast Manager DE

Select a directory where the SPM.
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Help on: IMRI model specification

T g parameters

. Units for design

.Interscan interval

. Microtime resolution

. Microtime onset

Data & Design

. Subject/Session
Scans

.. Conditions
... Condition
....Name
....Onsets
.... Durations
... Time Modulation
. Parametric Modulations
Parameter
.Name
Values
. Polynomial Expansion
. ondition
....Name
....Onsets
.. Durations
. Time Modulation
. Parametric Modulations
... Condition
....Name

Current tem: Directory

Select Fles

.pSessions/SNS_OITG_010&lm/simple_hatf

Seconds
25

16

8

759 files
investment
70x1 doub\g
No Time Modulation
inv_amt
70x1 double
1storder
decision
70x1 double

70x1 double
No Time Modulation

_answer

at file containing the specified design matrix will be written.
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How it’s done in SPM

June 14, 2015

Batch Editor

File Edit View SPM BasiclO

» DE @ b
Module List Current Module: fMRI medel specification

fMRI model specification ....0Onsets 69x%1 double

Maodel estimation DE .... Durations 2
Contrast Manager DE .... Time Modulation Mo Time Modulation

. ... Parametric Modulations

: : : : : Mame rpy_mui

| ......Polynomial Expansion TSt order

VE!ues rpy_mu2

Enteravalue. ﬁgx!] gt%urggar

Toclearavalue, cleartheinput field and accept. rpy_dau

Ceantinnutuith CTRLRETURN, cancel with ESC. 6‘9*11 g‘:)“rgfr

reg.mui

rpy_dai

B9x1 double

1st order

rpy_da2

69x1 double

1st order
_fmri_00001 .bet

128

Edit Value

Enter a vector of values, one for each occurence of the event.
Evaluated statements are entered.
An X-by-1 array must be entered.
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How it's done in SPM

June 14, 2015

800 SPM8 (xm): Menu

Reali... = |

Slice timing

| 1 Smooth

Coreg...

Marm...

| Segment |

Specify 1st-level

Review

Specify 2nd-level

Estimate

Results

Dynamic Causal Modelling

| Display | | Check Reg |

Re...

s | FMRAL 3

L3 v

PPls

ImCalc DICOM Import

L3

Help | | Utls.. 3 Batch Quit
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How it's done in SPM

June 14, 2015

800

SPM8 (xm): Graphics

File

Model-based imaging,

Edit View Insert Tools Desktop Window SPMFigure Help

regressor [

Time domain
regressars for repaymen

Frequency domain
128 second High-pass filter

;an | Hnmm.m

i T L

200 400
scan

Basis set and peristimulus sampling
hef {with time and dispersion derhatives;

relative spectral density

0.1 0.15
Fraguency (Hz)

parameters

-40 -20 [
time {secs)
TR=2.50secs
156ms time bins

1000 1500 2000
time {secs}
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How it's done in SPM

800 SPM8 (xm): Menu

Reali... +| | slicetiming | | Smooth

Coreg... Morm... % |  Segment |

| Specify 1st-level | | Review [

| Specify 2nd-level [ || Estimate I

| Results |

Dynamic Causal Modelling

[ Display | [ Check Reg | Re.. 5| | FMAI 3

L3 v

PPls ImCalc DICOM Import

Help | | Utls.. 3 Batch Quit

L3
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How it's done in SPM

June 14, 2015

800 SPM8 (xm): Graphics

File

Edit View Insert Tools Desktop Window SPM Figure Help

Model-based imaging,

repayment

contrast(s)

|

[ 20 0

Design matrix
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Take home

* The brain is an organ whose job is prediction.
* To make its predictions, it needs a model.
* Model-based imaging infers the model at work in the brain.

* [tenables inference on mechanisms, localization of
mechanisms, and model comparison.

Agent :
Sensory input @
|

I

|

I

I

|

True
hidden states

Inferred
hidden states

ActionI
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Thank you
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