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• It is widely taken for granted that the mind functions within the confines of 
neurobiology. 

 

• It is less appreciated that there are also systems theoretic constraints on how 
the mind has to operate. 

 

• In systems theory, the mind (and its substrate, the body including the brain) 
is seen as a regulator of its environment. 

 

• In order to survive, the mind has to be a good regulator of its environment. 

 

• That is, the mind has to regulate its environment in way that ensures its – the  
mind’s – further  existence. 

Systems theory places constraints on the mind 
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• This is the title of a paper by Conant & Ashby (1970) where they give a 
proof of this statement (the “good regulator theorem”). 

 

• In addition to a systems theorist, Ashby was a psychiatrist and as such 
immediately understood the consequences of his theorem for the brain: 

 

“The theorem has the interesting corollary that the living brain, so far as it is 
to be successful and efficient as a regulator for survival, must proceed, in 
learning, by the formation of a model (or models) of its environment.” 

“Every good regulator of a system must be a model 
of that system” 
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• The formal definition of surprise in words: the surprise associated with an 
event is the negative logarithm of that event’s probability. 

 

• As a graph: 

There’s more: in order to be a good regulator, the 
brain needs to minimize surprise 

surprise 

0 1 
𝑝 𝑦 𝑚  
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• Under ergodic* assumptions, the sum (or, more precisely, the integral) of 
surprise over time is entropy. 

*Ergodic systems are such where time spent in a given state is proportional to the probability of that state. 

 

• This gives us an additional perspective on what it means to stay alive: we 
have to keep the entropy of our sensations (ie, of the states we visit) low. 

 

• Here we have the link between information entropy and physical 
entropy: an organism that wants stay alive has to resist the second law of 
thermodynamics (an increase in its own physical entropy would mean 
death), and the way it achieves this is by minimizing information entropy 
(ie, by sampling its environment such that external and internal states 
are predictable). 

Minimizing the time-average of surprise is 
equivalent to minimizing entropy 
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• In all but the simplest cases, the equation for surprise has no closed-form 
solutions. 

 

• One way to deal with this is to introduce approximations. Since the minds 
we know are certainly not optimal, it’s a safe assumption that they are 
not minimizing surprise, but an approximation to it. 

 

• One possible and plausible approximation to surprise is variational free 
energy (cf. Friston, 2009; Feynman, 1972). 

But there’s a problem: surprise is intractable 
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• It means ascribing hidden states to the environment which are related to 
each other by parameters. 
 

• Hidden states change in time, parameters do not. 
 

• Hidden states are hidden in the sense that they are not directly accessibly to 
the sensorium but have to be inferred on the basis of sensory evidence. 
 

• The probability of a certain sensation given hidden states and parameters is 
called the likelihood. 
 

• The likelihood alone is not a complete description of the model. We still need 
the probability of the hidden states and parameters. These are called the 
priors. 
 

• The product of likelihood and priors is the joint probability (of sensations, 
hidden states, and parameters) and constitutes a generative model. 

What does it mean to have a model? 
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• 𝐴 can be decomposed into complexity minus accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• 𝐴 is minimized when the precision of the likelihood is optimal relative to the precision of 
the prior. 
 

Optimal inference depends on optimal precision 
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Varieties of free energy 

At least three kinds of free energy have to be kept apart: 

 

• Thermodynamic free energy 

 

• Informational free energy 

 

• Variational free energy 

 

First however, we need to know the reason why thermodynamic quantities 
show up (at least in name) in information theory. 
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Thermodynamic free energy 

• Two kinds: Gibbs and Helmholtz 

 

• Helmholtz free energy: 

 
𝐴 ≔ 𝑈 − 𝑇𝑆 

 

• 𝑈: internal energy;     𝑇: temperature;     𝑆: entropy 

 

• [Gibbs free energy:      𝐺 ≔𝑈 + 𝑝𝑉 − 𝑇𝑆] 
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Informational free energy 

Here is where it gets interesting, but first we need some new concepts. 

 

• A generative model m of an observation y has two components. 

 

• First, the likelihood: 
𝑝 𝑦 𝜗,𝑚  

• This is the probability of the observation, given the model and a 
particular set of parameter values 𝜗. 

 

• Second, the prior: 
𝑝 𝜗 𝑚  

• This is the probability that the particular set of parameter values 𝜗 had to 
begin with (therefore: “prior”). 
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Informational free energy 

• Multiplied together, the likelihood and the prior give the joint probability 
of observations and parameter settings: 

 
𝑝 𝑦, 𝜗 𝑚 = 𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚  

 

• This equality holds because of the product rule of probability theory 

 

• Such a joint probability consisting of a likelihood and a prior is what we 
mean when we speak of a generative model. 
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Informational free energy 

• The next important concept is the posterior probability 𝑝 𝜗 𝑦,𝑚 . This 
is the probability of a particular set of parameter values given the 
observation and the model. 

 

• Like the joint probability, it can be calculated using the product rule: 

 

𝑝 𝜗 𝑦,𝑚 =
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑝 𝑦 𝑚
 

 

• This particular application of the product rule is called Bayes’ theorem. 
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Informational free energy 

• Bayes’ theorem now contains another new concept: the model evidence 
or marginal likelihood 𝑝 𝑦 𝑚 . This is the overall probability of making 
observation y given model m, regardless of parameter values (i.e., after 
taking account of all possible parameter values according to their 
probability): 

𝑝 𝑦 𝑚 =  𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚 d𝜗 

 

• It makes intuitive sense to take the negative logarithm of 𝑝 𝑦 𝑚  as a 
measure of surprise: if 𝑝 𝑦 𝑚 = 1, the outcome was certain and there 

was no surprise at all (−log 𝑝 𝑦 𝑚 = 0); if, however, 𝑝 𝑦 𝑚 = 0, the 

outcome was impossible and surprise is infinite (−log 𝑝 𝑦 𝑚 = ∞). In 

between, surprise is greater than zero and increases for less probable 
observations. 
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Informational free energy 

• Surprise is essential as a measure of how good a model is. When we 
compare models, we calculate the Bayes factor: 

 

𝐵𝐹 =
𝑝 𝑦 𝑚1

𝑝 𝑦 𝑚0
 

 

• This is a measure of whether model 𝑚1 is more surprised by the outcome 
y than model 𝑚0. 
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Entropy 

• The more ignorant we are about a quantity, the greater is the surprise we may 
expect when observing it.  

 

• Expected surprise is called the entropy 𝑆 of a probability distribution 𝑝: 

 

𝑆 𝑝 ≔ − 𝑝 𝜗 log𝑝 𝜗 d𝜗 

 

• Entropy is a measure of ignorance. 

 

• Its name is due to an analogous quantity in thermodynamics. 
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Entropy example 

• As a simple example, let’s look at a coin toss. 

 

• There are two possible outcomes: 𝜗 ∈ heads, tails  

 

• Since outcomes are discrete and binary, we use a sum instead of an integral and 
the binary logarithm to define the entropy: 

 

𝑆 𝑝 ≔ − 𝑝 𝜗 log2 𝑝 𝜗

𝜗

 

 

• For a fair coin (i.e., 𝑝 heads = 𝑝 tails = 1

2
), 𝑆 𝑝 = 1 

 

• However, for 𝑝 heads = 9

10
 ,  𝑝 tails = 1

10
 , we get 𝑆 𝑝 ≈ 0.47 because expected 

surprise is much lower. 
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Informational free energy 

• We can now begin to understand the connection with free energy. First, we 
perform a series of algebraic operations on the negative logarithm of surprise 
𝑝 𝑦 𝑚 : 

 

𝐴 ≔ − log𝑝 𝑦 𝑚 = − 𝑝 𝜗 𝑦,𝑚 log 𝑝 𝑦 𝑚 d𝜗 

    = − 𝑝 𝜗 𝑦,𝑚 log
𝑝 𝑦, 𝜗 𝑚

𝑝 𝜗 𝑦,𝑚
d𝜗 

= − 𝑝 𝜗 𝑦,𝑚 log𝑝 𝑦, 𝜗 𝑚 d𝜗

≔𝑈

− − 𝑝 𝜗 𝑦,𝑚 log 𝑝 𝜗 𝑦,𝑚 d𝜗

≔𝑆

 

 

• This gives us an information theoretic analogon to the definition of Helmholtz 
free energy in thermodynamics 
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Variational free energy 

• The problem with informational free energy is that we cannot calculate it except 
in trivial cases. Whenever models are complicated enough to be interesting, the 
integrals involved are intractable. 

𝐴 ≔ − 𝑝 𝜗 𝑦,𝑚 log 𝑝 𝑦, 𝜗 𝑚 d𝜗

≔𝑈

− − 𝑝 𝜗 𝑦,𝑚 log 𝑝 𝜗 𝑦,𝑚 d𝜗

≔𝑆

 

 

• The solution to this is variational free energy, where we replace the true 
posterior 𝑝 𝜗 𝑦,𝑚  by an approximation 𝑞 𝜗 : 

 

𝐴𝑣 ≔ − 𝑞 𝜗 log 𝑝 𝑦, 𝜗 𝑚 d𝜗

≔𝑈𝑣

− − 𝑞 𝜗 log 𝑞 𝜗 d𝜗

≔𝑆𝑣
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Variational free energy 
• What makes variational free energy 𝐴𝑣  such an extremely useful concept is the following 

theorem: 
𝐴𝑣 ≥ 𝐴  for all  𝑞 𝜗  

 

• This means that whatever 𝒒 𝝑  we plug into 𝑨𝒗, we get an 𝑨𝒗 that is greater than 𝑨. So 
without having to know anything about 𝐴, we can vary 𝑞 𝜗  such that it minimizes 𝐴𝑣 . 

𝐴𝑣 ≔ −  𝑞 𝜗 log 𝑝 𝑦, 𝜗 𝑚 d𝜗 +  𝑞 𝜗 log 𝑞 𝜗 d𝜗 

• The branch of mathematics that describes how to carry out the minimization of 𝐴𝑣  with respect to 
𝑞 𝜗  is called variational calculus, hence “variational” free energy. 

 

• Minimizing 𝐴𝑣  with respect to 𝑞 𝜗  leads to an approximation of 𝑝 𝜗 𝑦,𝑚  by 𝑞 𝜗  because of the 
theorem above and because 𝐴𝑣 = 𝐴 for 𝑞 𝜗 = 𝑝 𝜗 𝑦,𝑚 . 

 

• The remarkable thing here is that we can use variational calculus to find a 𝑞 𝜗  that approximates 
𝑝 𝜗 𝑦,𝑚  without ever having to know 𝒑 𝝑 𝒚,𝒎  itself. 

 

• This is how the brain can build, update, and compare  models of the world without ever “seeing 
behind the scenes” of its sensory input. 
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Variational free energy 

Proof that 𝐴𝑣 ≥ 𝐴  for all  𝑞 𝜗 : 

 

 

𝐴 ≔ − log 𝑝 𝑦 𝑚  

     = − log 𝑝 𝑦, 𝜗 𝑚 d𝜗 

     = − log 𝑞 𝜗
𝑝 𝑦, 𝜗 𝑚

𝑞 𝜗
d𝜗  

     ≤ − 𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝑚

𝑞 𝜗
d𝜗 

    = − 𝑞 𝜗 log 𝑝 𝑦, 𝜗 𝑚 d𝜗 +  𝑞 𝜗 log 𝑞 𝜗 d𝜗 

     =: 𝐴𝑣  

Jensen’s inequality 

21 



Three ways to decompose 𝑨𝒗 

𝐴𝑣 ≔ −  𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝑚

𝑞 𝜗
d𝜗 

     = − 𝑞 𝜗 log 𝑝 𝑦, 𝜗 𝑚 d𝜗

Expected energy 𝑈𝑣

− − 𝑞 𝜗 log 𝑞 𝜗 d𝜗

Entropy 𝑆𝑣

 

  

      = − 𝑞 𝜗 log
𝑝 𝜗 𝑦,𝑚 𝑝 𝑦 𝑚

𝑞 𝜗
d𝜗 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑦,𝑚 − log 𝑝 𝑦 𝑚

=𝐴

 

  

      = − 𝑞 𝜗 log
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑞 𝜗
d𝜗 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚

Complexity

−  𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗

Accuracy
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The first decomposition of 𝑨𝒗 

𝐴𝑣 = −  𝑞 𝜗 log 𝑝 𝑦, 𝜗 𝑚 d𝜗 − − 𝑞 𝜗 log 𝑞 𝜗 d𝜗  

      = 𝑈𝑣 − 𝑆𝑣 
  
      = Expected energy − Entropy 
  

 

• This first decomposition illustrates the mathematical analogy to statistical mechanics. 

 

• More importantly, it only contains quantities known to the model-builder: the joint density 
𝑝 𝑦, 𝜗 𝑚 , consisting of likelihood and prior, and the arbitrary density 𝑞 𝜗 . 

 

• Because it only contains known quantities, this decomposition shows that 𝐴𝑣  is, in principle, 
computable up to an arbitrarily small error. 
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The second decomposition of 𝑨𝒗 

𝐴𝑣 =𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑦,𝑚 − log 𝑝 𝑦 𝑚

=𝐴

 

  
      = Divergence between approixmate and true posterior + log−model evidence 
  

 

• The Kullback-Leibler divergence between two distributions is defined as 

𝐾𝐿 𝑝1, 𝑝2 ≔  𝑝1 𝜗 log
𝑝1 𝜗

𝑝2 𝜗
d𝜗 

• It is zero if and only if  𝑝1 = 𝑝2, otherwise positive. It is not symmetric (i.e., 𝐾𝐿 𝑝1, 𝑝2 ≠
𝐾𝐿 𝑝2, 𝑝1  in general). 

 

• This second decomposition again shows that 𝐴𝑣 ≥ 𝐴  for all  𝑞 𝜗  (because the divergence is 
non-negative). 

 

• Crucially, it again shows that minimizing 𝑨𝒗 with respect to 𝒒 𝝑  leads to an 
approximation of 𝒑 𝝑 𝒚,𝒎  by 𝒒 𝝑 . 
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The third decomposition of 𝑨𝒗 

𝐴𝑣 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚 −  𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗 

  
      = Complexity − Accuracy 
  

 

• The expected log-likelihood log 𝑝 𝑦 𝜗,𝑚  under the approximate posterior 𝑞 𝜗  is a 
measure of the accuracy we may expect under the current model. 

 

• The divergence between the approximate posterior 𝑞 𝜗  and the prior 𝑝 𝜗 𝑚  is a measure 
for how much the data 𝑦 have forced the model to adapt.  As such, it is a measure of model 
complexity. 

 

• It is important to note that complexity cannot be assessed in the absence of data. Different 
data will lead to different complexity. One way to remind oneself of this is to think of model 
complexity as the complexity of the data under the current model. 
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The third decomposition of 𝑨𝒗 

𝐴𝑣 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚 −  𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗 

  
      = Complexity − Accuracy 
  

 

• This decomposition illustrates why 𝐴𝑣  is a good measure of model quality: a good model is 
one that makes good predictions.  

 

• This means that inferences based on currently available data have to generalize to new data.  

 

• There are two dangers to this: seeing patterns where there are none (i.e., too much 
complexity) and missing patterns (i.e., too little accuracy). 

 

• 𝐴𝑣  is a measure that balances these two opposing demands because it rewards accuracy 
while penalizing complexity. 
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The third decomposition of 𝑨𝒗 

𝐴𝑣 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚 −  𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗 

  
      = Complexity − Accuracy 
  

 

 

• The principled reason why 𝐴𝑣  is a good measure of model quality is that the difference in 𝐴𝑣  
is an approximation to the log-Bayes factor. 

 

• AIC (the Akaike Information Criterion) and BIC (the Bayesian Information Criterion) are 
approximations to 𝐴𝑣  where the complexity term is replaced by a function of the number of 
parameters. 
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The third decomposition of 𝑨𝒗 

𝐴𝑣 = 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚 −  𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗 

  
      = Complexity − Accuracy 
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Bayesian inference 

Movie! 
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Bayesian inference 

Since variational free energy is a tool for Bayesian inference, it will be worth 

our while to look at Bayesian inference more deeply and to explore its 

connections with logic and with classical statistics. 
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«The actual science of logic is conversant at present only with things either 

certain, impossible, or entirely doubtful, none of which (fortunately) we have 

to reason on. Therefore the true logic for this world is the calculus of 

probabilities, which takes account of the magnitude of the probability which 

is, or ought to be, in a reasonable man's mind.» 

 — James Clerk Maxwell, 1850 

«Bayesian» = logical 
and 

logical = probabilistic 
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«Bayesian» = logical 
and 

logical = probabilistic 

But in what sense is probabilistic reasoning (i.e., reasoning about uncertain 

quantities according to the rules of probability theory) «logical»? 

 

R. T. Cox showed in 1946 that the rules of probability theory can be derived 

from three basic desiderata: 

1. Representation of degrees of plausibility by real numbers 

2. Qualitative correspondence with common sense (in a well-defined sense) 

3. Consistency 
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The rules of probability 

By mathematical proof (i.e., by deductive reasoning) the three desiderata as set out 

by Cox imply the rules of probability (i.e., the rules of inductive reasoning). 

This means that anyone who accepts the desiderata must accept the following rules: 

 

1.   𝑝 𝑎 = 1𝑎                                                    (Normalization) 

2.  𝑝 𝑏 =  𝑝 𝑎, 𝑏𝑎                                         (Marginalization – also called the sum rule) 

3.  𝑝 𝑎, 𝑏 = 𝑝 𝑎 𝑏 𝑝 𝑏 = 𝑝 𝑏 𝑎 𝑝 𝑎       (Conditioning – also called the product rule) 

 

 

«Probability theory is nothing but common sense reduced to calculation.» 

— Pierre-Simon Laplace, 1819 
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Conditional probabilities 

• The probability of 𝒂 given 𝒃 is denoted by 

• 𝑝 𝑎 𝑏 . 

• In general, this is different from the probability of 𝑎  alone (the marginal 

probability of 𝑎), as we can see by applying the sum and product rules: 

• 𝑝 𝑎 =  𝑝 𝑎, 𝑏 =  𝑝 𝑎 𝑏 𝑝 𝑏𝑏𝑏  

• Because of the product rule, we also have the following rule (Bayes’ theorem) for 

going from 𝑝 𝑎 𝑏  to 𝑝 𝑏 𝑎 : 

• 𝑝 𝑏 𝑎 =
𝑝 𝑎 𝑏 𝑝 𝑏

𝑝 𝑎
=

𝑝 𝑎 𝑏 𝑝 𝑏

 𝑝 𝑎 𝑏′ 𝑝 𝑏′𝑏′
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A simple example of Bayesian inference 
(adapted from Jaynes (1976)) 

Assuming prices are comparable, from which manufacturer would you buy? 

A: B: 

Two manufacturers, A and B, deliver the same kind of components that turn out to 

have the following lifetimes (in hours): 
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A simple example of Bayesian inference 

How do we compare such samples? 

• By comparing their arithmetic means 

 

Why do we take means? 

• If we take the mean as our estimate, the error in our estimate is the mean of the 

errors in the individual measurements 

• Taking the mean as maximum-likelihood estimate implies a Gaussian error 

distribution 

• A Gaussian error distribution appropriately reflects our prior knowledge about 

the errors whenever we know nothing about them except perhaps their variance 
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What next? 

• Let’s do a t-test (but first, let’s compare variances with an F-test): 

 

 

 

 

 

 

Is this satisfactory? No, so what can we learn by turning to probability 

theory (i.e., Bayesian inference)? 

A simple example of Bayesian inference 

Means not significantly different! 

Variances not significantly different! 
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A simple example of Bayesian inference 

The procedure in brief: 

• Determine your question of interest («What is the probability that...?») 

• Specify your model (likelihood and prior) 

• Calculate the full posterior using Bayes’ theorem 

• [Pass to the uninformative limit in the parameters of your prior] 

• Integrate out any nuisance parameters 

• Ask your question of interest  of the posterior 

All you need is the rules of probability theory. 

(Ok, sometimes you’ll encounter a nasty integral – but that’s a technical difficulty, 

not a conceptual one). 
38 



A simple example of Bayesian inference 

The question: 

• What is the probability that the components from manufacturer B 

have a longer lifetime than those from manufacturer A? 

• More specifically: given how much more expensive they are, how 

much longer do I require the components from B to live. 

• Example of a decision rule: if the components from B live 3 hours 

longer than those from A with a probability of at least 80%, I will 

choose those from B. 
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A simple example of Bayesian inference 

The model (bear with me, this will turn out to be simple): 

• likelihood (Gaussian): 

𝑝 𝑥𝑖 𝜇, 𝜆 =  
𝜆

2𝜋

1
2

𝑛

𝑖=1

exp −
𝜆

2
𝑥𝑖 − 𝜇 2  

 

• prior (Gaussian-gamma): 

𝑝 𝜇, 𝜆 𝜇0, 𝜅0𝑎0, 𝑏0 = 𝒩 𝜇 𝜇0, 𝜅0𝜆
−1 Gam 𝜆 𝑎0, 𝑏0  
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A simple example of Bayesian inference 

The posterior (Gaussian-gamma): 

𝑝 𝜇, 𝜆 𝑥𝑖 = 𝒩 𝜇 𝜇𝑛, 𝜅𝑛𝜆
−1 Gam 𝜆 𝑎𝑛, 𝑏𝑛  

 

Parameter updates: 

𝜇𝑛 = 𝜇0 +
𝑛

𝜅0 + 𝑛
𝑥 − 𝜇0 , 𝜅𝑛 = 𝜅0 + 𝑛, 𝑎𝑛 = 𝑎0 +

𝑛

2
 

𝑏𝑛 = 𝑏0 +
𝑛

2
𝑠2 +

𝜅0

𝜅0 + 𝑛
𝑥 − 𝜇0

2  

with 

𝑥 ≔
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

, 𝑠2 ≔
1

𝑛
 𝑥𝑖 − 𝑥 2

𝑛

𝑖=1
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A simple example of Bayesian inference 

The limit for which the prior becomes uninformative: 

• For 𝜅0 = 0, 𝑎0 = 0, 𝑏0 = 0, the updates reduce to: 

𝜇𝑛 = 𝑥        𝜅𝑛 = 𝑛            𝑎𝑛 =
𝑛

2
        𝑏𝑛 =

𝑛

2
𝑠2 

• As promised, this is really simple: all you need is 𝒏, the number 

of datapoints; 𝒙 , their mean; and 𝒔𝟐, their variance. 

• This means that only the data influence the posterior and all influence from the 

parameters of the prior has been eliminated. 

• The uninformative limit should only ever be taken after the calculation of the 

posterior using a proper prior. 
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A simple example of Bayesian inference 

Integrating out the nuisance parameter 𝜆 gives rise to a t-

distribution: 
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A simple example of Bayesian inference 

The joint posterior 𝑝 𝜇𝐴, 𝜇𝐵 𝑥𝑖 𝐴, 𝑥𝑘 𝐵  is simply the product 

of our two independent posteriors 𝑝 𝜇𝐴 𝑥𝑖 𝐴  and 

𝑝 𝜇𝐵 𝑥𝑘 𝐵 . It will now give us the answer to our question: 

𝑝 𝜇𝐵 − 𝜇𝐴 > 3 =  d𝜇𝐴

∞

−∞

𝑝 𝜇𝐴 𝑥𝑖 𝐴  d𝜇𝐵

∞

𝜇𝐴+3

𝑝 𝜇𝐵 𝑥𝑘 𝐵 = 0.9501 

 

Note that the t-test told us that there was «no significant 

difference» even though there is a >95% probability that the 

parts from B will last at least 3 hours longer than those from A. 
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Bayesian inference 

The procedure in brief: 

• Determine your question of interest («What is the probability that...?») 

• Specify your model (likelihood and prior) 

• Calculate the full posterior using Bayes’ theorem 

• [Pass to the uninformative limit in the parameters of your prior] 

• Integrate out any nuisance parameters 

• Ask your question of interest  of the posterior 

 

All you need is the rules of probability theory. 
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Variational Laplace 

• Variational Laplace is a powerful implementation of Bayesian inference based 
on variational free energy. 

 

• “Variational Laplace” is shorthand for “variational Bayes under the mean field 
approximation and the Laplace assumption”. 

 

• The mean field approximation is the assumption that the true posterior 
𝑝 𝜗 𝑦,𝑚  can be approximated by an approximate posterior 𝑞 𝜗  that factorizes 
across subsets of 𝜗: 

𝑝 𝜗 𝑦,𝑚 ≈ 𝑞 𝜗 = 𝑞1 𝜗1 ∙ 𝑞2 𝜗2 ∙  … ∙ 𝑞𝑛 𝜗𝑛  

 

• The Laplace assumption is that the posterior is Gaussian. In particular, 𝑞 𝜗  will 
be Gaussian if each of the 𝑞𝑖 𝜗𝑖  is Gaussian. 
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Variational Laplace 

• Reminder: in order to approximate the true posterior 𝑝 𝜗 𝑦,𝑚  and to minimize 
surprise, we need to find the 𝑞 𝜗  that minimizes variational free energy 𝐴𝑣. 

 

• To find this optimal 𝑞∗ 𝜗 , we make use of variational calculus, a branch of 
mathematics that tells us how to take the derivative of a function of functions 
(usually, we deal with functions of variables that are numbers, not functions). At 
the minimum of 𝐴𝑣 with respect to 𝑞𝑖 𝜗𝑖 , we need this derivative to vanish: 

 
𝛿𝐴𝑣

𝛿𝑞𝑖
𝑞𝑖
∗ = 0 

 

• Solving this equation for 𝑞𝑖
∗, we find 

 

𝑞𝑖
∗ 𝜗𝑖 ∝ exp 𝐼 𝜗𝑖  

 

𝐼 𝜗𝑖 ≔  𝑞\𝑖
∗ 𝜗\𝑖 ln 𝑝 𝑦, 𝜗 𝑚 d𝜗\𝑖  
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Variational Laplace 

• 𝐼 𝜗𝑖 ≔  𝑞\𝑖
∗ 𝜗\𝑖 ln 𝑝 𝑦, 𝜗 𝑚 d𝜗\𝑖   is the variational energy. 

 

• The notation \𝑖 means “not i” (e.g., 𝑞\𝑖
∗ 𝜗\𝑖 =  𝑞𝑗

∗ 𝜗𝑗𝑗≠𝑖 ). 

 

• Since 𝑞𝑖
∗ 𝜗𝑖 ∝ exp 𝐼 𝜗𝑖  depends on all the other 𝑞𝑗

∗ with 𝑗 ≠ 𝑖 (which we don’t 

know at the outset), we have to start with a reasonable guess for each of the 𝑞𝑖  
and keep updating them iteratively until we converge on 𝑞𝑖

∗. This procedure is 
called variational Bayes. 

 

• If we additionally constrain the 𝑞𝑖  to be a Gaussian with its mean at the maximum 
of 𝐼 𝜗𝑖  and the negative Hessian of 𝐼 𝜗𝑖  as its precision, we have variational 
Laplace. 

 

• This makes inference tractable even with complicated dynamic models and 
relevant prior information. 
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HGF: Context 

• Hierarchical Bayesian models are natural candidates for explaining learning 

 

 

 

 

 

 

 

 

 

• However, their normative nature and computational cost pose problems 

den Ouden et al. (2010) 

Behrens et al. (2007) 
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HGF: Context 

Rescorla-Wagner learning: 

Previous value 

(prediction) 

Learning rate 

Prediction error 

New input 
Value update 

Δ𝜇 = 𝛼 𝑥(𝑘) − 𝜇(𝑘−1)  

50 



A generalized approach to learning 

• A very general goal: to learn about a continuous quantity that changes 

 

 

 

 

• Assumption: it performs a Gaussian random walk 

𝑥(𝑘−1) 

 

𝑥(𝑘) 

 

𝑥(𝑘+1) 

 

𝑝 𝑥(𝑘)  

𝑥(𝑘−1) 

𝑥(𝑘)~𝒩 𝑥(𝑘−1), 𝜗  
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A generalized approach to learning 

• To allow for changes in volatility, we take the variance of the random walk to be a 
positive function 𝑓 of another state, 𝑥2. 

 

 

 

 

 

 

• We may then assume the volatility to perform its own Gaussian random walk. 

𝑝 𝑥2
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥2
(𝑘)

~𝒩 𝑥2
(𝑘−1)

, 𝜗  

𝑥1
(𝑘−1)

 𝑥1
(𝑘)

 𝑥1
(𝑘+1)

 

 

𝑥2
(𝑘−1)

 

 

𝑥2
(𝑘)

 

 

𝑥2
(𝑘+1)

 

 

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

, 𝑓 𝑥2  

𝑝 𝑥1
(𝑘)

 

𝑥1
(𝑘−1)

 

52 



A generalized approach to learning 

This can be continued ad infinitum. In practice, we stop at some level 𝑛, 
where we assume the volatility to be constant. 

𝑝 𝑥𝑛
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑛
(𝑘)

~𝒩 𝑥𝑛
(𝑘−1)

, 𝜗  

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

, 𝑓1 𝑥2  

𝑝 𝑥1
(𝑘)

 

𝑥1
(𝑘−1)

 

𝑥2
(𝑘)

~𝒩 𝑥2
𝑘−1

, 𝑓2 𝑥3  

𝑝 𝑥2
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑓𝑖 𝑥𝑖+1  

𝑝 𝑥𝑖
(𝑘)

 

𝑥𝑖
(𝑘−1)
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Coupling between levels 

Since 𝑓 has to be everywhere positive, we cannot  approximate it by expanding in powers. 
Instead, we expand its logarithm. 

 

𝑓 𝑥 > 0 ∀ 𝑥 ⟹ ∃ 𝑔: 𝑓 𝑥 = exp 𝑔 𝑥  ∀ 𝑥                    

 
𝑔 𝑥 = 𝑔 𝑎 + 𝑔′ 𝑎 ∙ 𝑥 − 𝑎 + 𝑂 2 = log 𝑓 𝑥 =       

 

= log 𝑓 𝑎 +
𝑓′(𝑎)

𝑓(𝑎)
∙ 𝑥 − 𝑎 + 𝑂(2) =            

 

=
𝑓′(𝑎)

𝑓(𝑎)
≝𝜅

∙ 𝑥 + log 𝑓 𝑎 − 𝑎 ∙
𝑓′(𝑎)

𝑓(𝑎)
≝𝜔

+ 𝑂 2 = 

 
= 𝜅𝑥 + 𝜔 + 𝑂 2                                                   

 
⟹ 𝑓 𝑥 ≈ exp 𝜅𝑥 + 𝜔                                                            
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Variational inversion 

• A quadratic approximation is found by expanding to second order 
about the expectation 𝜇(𝑘−1). 

• The update in the sufficient statistics of the approximate posterior is 
then performed by analytically finding the maximum of the quadratic 
approximation. 

x

μ(k) μ(k-1)

Ĩ(x)I(x)

Expansion point

Our quadratic

approximation

Variational

energy

Maximum of Ĩ

Laplace’s quadratic

approximation
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Δ𝜇𝑖 ∝
𝜋 𝑖−1

𝜋𝑖
𝛿𝑖−1 

Variational inversion and update equations 

• Inversion proceeds by introducing a mean field approximation and fitting 
quadratic approximations to the resulting variational energies (Mathys et al., 
2011). 

• This leads to simple one-step update equations for the sufficient statistics 
(mean and precision) of the approximate Gaussian posteriors of the states 𝑥𝑖 . 

• The updates of the means have the same structure as value updates in Rescorla-
Wagner learning: 

 

 

 

 

 

• Furthermore, the updates are precision-weighted prediction errors. 

Prediction error 

Precisions determine 

learning rate 
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Precision-weighting of updates 

• Updates are weighted by belief precisions. 

• To see this, first consider a simple non-hierarchical model with one parameter 𝜗. 

• Likelihood and prior are Gaussian, therefore the posterior also: 

 

 

 

 

 

• The exact Bayesian update then is the precision-weighted prediction error: 

⟹   𝑝 𝜗 𝑦 = 𝒩 𝜗; 𝜇𝜗|𝑦, 𝜋𝜗|𝑦  

𝑝(𝜗) = 𝒩(𝜗; 𝜇𝜗, 𝜋𝜗) 

𝑝 𝑦 𝜗 = 𝒩(𝑦; 𝜗, 𝜋𝜀) 

Prior 

Likelihood 

Posterior 

𝜋𝜗|𝑦 = 𝜋𝜗 + 𝜋𝜀 𝜇𝜗|𝑦 = 𝜇𝜗 +
𝜋𝜀

𝜋𝜗|𝑦
(𝑦 − 𝜇𝜗) 

 
Precision-weighted 

prediction error 
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Precision-weighting of updates 

Comparison to the simple non-hierarchical Bayesian update: 

 

 

 

HGF: 

 

 

 

 

 

Simple Gaussian: 

 

𝜇𝑖
(𝑘)

= 𝜇𝑖
(𝑘−1)

+
1

2
𝜅𝑖−1 𝑣𝑖−1

(𝑘)
∙
𝜋 𝑖−1

(𝑘)

𝜋𝑖
(𝑘)

∙ 𝛿𝑖−1
(𝑘)

 

𝜇𝜗|𝑦 = 𝜇𝜗 +
𝜋𝜀

𝜋𝜗|𝑦
(𝑦 − 𝜇𝜗) 

Precision-weighted 

prediction error 
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Context effects on the learning rate 

Simulation: 4.1  ,2.2  ,5.0  
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Parameter estimation 

Decreasing noise 

4 estimation methods: 

NMSA 

GPGO 

VB 

MCMC 
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Practical uses 

• Updates have a general and interpretable structure. 

 

• They are computationally extremely efficient. 

 

• They contain parameters that can differ from subject to subject and can be 
individually estimated from experimental data. 

 

• This enables the comparison of parameter estimates between subjects and of 
evolving beliefs on states within subjects. 

 

• Furthermore, it provides a basis for model selection on the basis of log-model 
evidence (e.g., comparison of learning models with different hierarchical depths, 
comparison of decision models). 
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Associative learning task (Iglesias et al., 2013) 

Prediction 
800/1000msec 

Target 
150msec 

Cue 
300msec 

or 

ITI 
2000 ± 500msec 

Time 

or 

• fMRI 
 

• 10 blocks of changing association strength: 
0.1 / 0.3  / 0.5 / 0.7 / 0.9 

 
• 320 trials + 64 null events 
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Application to binary data 

State of the 

world 
Model 

Log-volatility 

x3 

 of tendency 

Gaussian 

random walk with 

constant step 

size ϑ 

p(x3
(k)) ~ N(x3

(k-1),ϑ) 

Tendency 

x2 

towards 

category “1” 

Gaussian 

random walk with 

step size 

exp(κx3+ω) 

p(x2
(k)) ~ N(x2

(k-1), exp(κx3+ω)) 

Stimulus 

category 

x1  
(“0” or “1”) 

Sigmoid trans-

formation of x2  

p(x1=1) = s(x2) 

p(x1=0) = 1-s(x2) 

0

x2

1

p(x1=1)

𝑥1
(𝑘−1)

 

𝜅, 𝜔 

𝜗 

𝑥3
(𝑘−1)

 

𝑥2
(𝑘−1)

 

𝑥3
(𝑘)

 

𝑥2
(𝑘)

 

𝑥1
(𝑘)

 

x3
(k-1)

p(x3
(k))

x2
(k-1)

p(x2
(k))
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Update equation for binary observations  

• 𝑥1 ∈ *0,1+ is observed by the agent. Each observation leads to an update in the 
belief on 𝑥2, 𝑥3, …, and so on up the hierarchy. 

• The updates for 𝑥2 can be derived in the same manner as above. 

 

 

 

 

 

• At first, this simply looks like an uncertainty-weighted update. However, when 
we unpack 𝜎2 and do a Taylor expansion in powers of 𝜋 1, we see that it is again 
proportional to the precision of the prediction on the level below: 

 

 

 

 

• At all higher levels, the updates are as previously derived. 

𝐼 𝑥2
(𝑘)

= ln 𝑠 𝑥2
(𝑘)

+ 𝑥2
(𝑘)

𝑥1
(𝑘)

− 1 −
1

2
𝜋 2

𝑘
𝑥2
(𝑘)

− 𝜇2
(𝑘−1) 2

 

𝜇2
(𝑘)

= 𝜇2
(𝑘−1)

+ 𝜎2
(𝑘)

𝛿1
(𝑘)

 

𝜎2
(𝑘)

=
𝜋 1

𝑘

𝜋 2
𝑘

𝜋 1
𝑘

+ 1
= 𝜋 1

𝑘
− 𝜋 2

𝑘
𝜋 1

𝑘
2
+ 𝜋 2

𝑘
2

𝜋 1
𝑘

3
+ 𝑂(4) 
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Decision model 
• Softmax decision rule 

• Curve shape is determined by the parameter ζ 

• Translates beliefs into decision probabilities 

Probability of 
decision “1”, 

(i.e., of betting 
on “1”) 

Prediction that next stimulus is “1” 
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Taking it all together: perception and decision 

𝑝(𝑦 = 1) = 𝑠 𝜇2
(𝑘−1)

 , 휁  

𝑥3 

 

𝑥2 

𝜗 

𝜅, 𝜔 

ζ 
 

Perceptual model 

Decision model 

𝑦 𝑥1 

cf. Daunizeau et al. (2010a,b) 
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Taking it all together: notation 

𝑦 

ζ 
 

≝ 

ζ 
 

𝑦(𝑘−1) 𝑦(𝑘) 𝑦(𝑘+1) 

𝑘 = 1,… , 𝑛 

ζ 
 

≝ 
ζ 

 

𝑦(𝑘) 

 

𝑘 = 1,… , 𝑛 

𝑦 

𝑥 

≝ 

𝑘 = 1,… , 𝑛 

𝑢 
𝑢(𝑘−1) 

 

𝑢(𝑘) 

 

𝑢(𝑘+1) 

 

𝑥(𝑘−1) 

 

𝑥(𝑘) 

 

𝑥(𝑘+1) 
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Individual belief trajectories 
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Individual belief trajectories 
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Individual regressors 
 

 

 

 

Uncertainty-weighted prediction error 𝜎2 ∙ 𝛿1 
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휀2 = 𝜎2
(𝑘)

𝛿1
(𝑘)

 
positive correlation 

p < 0.05 FWE whole-brain corrected 

 x  y  z 

-1.5 21 46.5 
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휀2 = 𝜎2
(𝑘)

𝛿1
(𝑘)

 
positive correlation 

p < 0.05 FWE mask 

 x  y  z 
4.5 -25.5 -18 
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Social learning (Diaconescu et al., in prep.) 

Subjects 
must 
compute: 

3s 2s 6s 1s 

Cue and Advice Decision Outcome 

𝑝 blue  cue = 65% blue, advice = green, history of advice  

Cue: 

Reliability of 
Advice 

0

0.5

1

Video of adviser holding up 
blue or green card 

Advice: 
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Social learning (Diaconescu et al., in prep.) 

Bayesian model selection: 

 

 

 

 

 

 

 

 

 

 

 

 

 

⟹ Use of volatility estimates in adjusting learning 

⟹ Combination of both social and non-social cues in decision-making 
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𝑏 = 휁1 𝜇 1 + 1 − 휁1 𝑐  

Integrated belief: positive and negative correlations 
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Posner task (Vossel & Mathys et al., 2014) 

Measurement of saccadic reaction times in volatile Posner task 
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Posner task (Vossel & Mathys et al., 2014) 

=-5.84; ϑ=0.02 =-4.5; ϑ=0.98 
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Posner task (Vossel & Mathys et al., 2014) 

Learning models Decision models 

Precis

ion 
Belief 

Surpri

se 

1 

level 

2 

levels 

3 

levels 

L
ea

rn
in

g 

Decision 

Precis

ion 
Belief 

Surpri

se 

1 

level 

2 

levels 

3 

levels 
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Extensions (Guo et al., in prep.) 
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Extensions 

𝑢 

𝑢(𝑘) ~ 𝒩 𝑥 𝑘 ,  exp 𝜅𝑢𝛼
(𝑘) + 𝜔𝑢  𝑦(𝑘) ~ 𝒩 𝜇𝑥

𝑘−1
, 휁  

𝑥(𝑘) ~ 𝒩 𝑥 𝑘−1 ,  exp 𝜅𝑥𝑥 
(𝑘) + 𝜔𝑥  

𝑥 (𝑘) ~ 𝒩 𝑥 (𝑘−1), 𝜗𝑥  

𝛼(𝑘) ~ 𝒩 𝛼 𝑘−1 ,  exp 𝜅𝛼 𝛼 
(𝑘) + 𝜔𝛼  

𝛼 (𝑘) ~ 𝒩 𝛼 (𝑘−1), 𝜗𝛼  

𝑥  𝛼  

𝑥 𝛼 

𝜗𝑥 𝜗𝛼 

𝜅𝑥, 𝜔𝑥 𝜅𝛼 , 𝜔𝛼 

𝜅𝑢, 𝜔𝑢 ζ 
 

Perceptual model Decision model 

𝑦 
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Extensions 

𝜇𝑥
𝑘

= 𝜇𝑥
𝑘−1

+
𝜋 𝑢

𝑘

𝜋𝑥
𝑘

 𝛿𝑢𝑥
𝑘

 

𝜋𝑥
𝑘

= 𝜋 𝑥
𝑘

+ 𝜋 𝑢
𝑘

 

𝜇𝛼
𝑘

= 𝜇𝛼
𝑘−1

+
𝜅𝑢

2

1

𝜋𝛼
𝑘

 𝛿𝑢𝛼
𝑘

 

𝜋𝛼
𝑘

= 𝜋 𝛼
𝑘

+
𝜅𝑢
2

2
1 + 𝛿𝑢𝛼

𝑘
 

𝜇𝛼 
𝑘

= 𝜇𝛼 
𝑘−1

+
𝜅𝛼

2

𝑤𝛼
𝑘

𝜋𝛼 
𝑘

 𝛿𝛼
𝑘

 

𝜋𝛼 
𝑘

= 𝜋 𝛼 
𝑘

+
𝜅𝛼
2

2
𝑤𝛼

𝑘
𝑤𝛼

𝑘
+ 𝑟𝛼

𝑘
𝛿𝛼

𝑘
 

𝜇𝑥 
𝑘

= 𝜇𝑥 
𝑘−1

+
𝜅𝑥

2

𝑤𝑥
𝑘

𝜋𝑥 
𝑘

 𝛿𝑥
𝑘

 

𝜋𝑥 
𝑘

= 𝜋 𝑥 
𝑘

+
𝜅𝑥
2

2
𝑤𝑥

𝑘
𝑤𝑥

𝑘
+ 𝑟𝑥

𝑘
𝛿𝑥

𝑘
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Extensions 
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Closing remarks on technical issues 

• A number of restrictions in the original formulation of the HGF 
can be lifted without destroying the simplicity of the update 
equations. 

 

• Inputs can arrive at irregular intervals. 

 

• The random walks may contain drift. 

 

• This drift may itself be changing in time and modeled by its 
own HGF hierarchy. 

 

• Instead of drift we may have first-order autoregressive (i.e., 
«AR(1)») processes. 
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Input at irregular intervals 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑡(𝑘)𝑓𝑖 𝑥𝑖+1 ,    𝑖 = 1,… , 𝑛 − 1. 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑓𝑖 𝑥𝑖+1 ,    𝑖 = 1,… , 𝑛 − 1. 
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Input at irregular intervals: update equations 

𝜇𝑖
(𝑘)

= 𝜇 𝑖
(𝑘)

+
1

2
𝜅𝑖−1 𝑣𝑖−1

(𝑘) 𝜋 𝑖−1
(𝑘)

𝜋𝑖
(𝑘)

𝛿𝑖−1
(𝑘)

 

𝜋𝑖
(𝑘)

= 𝜋 𝑖
(𝑘)

+
1

2
𝜅𝑖−1 𝑣𝑖−1

(𝑘)
𝜋 𝑖−1

𝑘
2

1 + 1 −
1

𝑣𝑖−1
(𝑘)

𝜋𝑖−1
(𝑘−1)

𝛿𝑖−1
(𝑘)

 

with 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
(𝑘−1)

 

𝜋 𝑖
(𝑘)

≝
1

𝜎𝑖
(𝑘−1)

+ 𝑡(𝑘) exp 𝜅𝑖𝜇𝑖+1
(𝑘−1)

+ 𝜔𝑖

 

𝑣𝑖
(𝑘)

≝ 𝑡(𝑘) exp 𝜅𝑖𝜇𝑖+1
(𝑘−1)

+ 𝜔𝑖  

𝛿𝑖
(𝑘)

≝
𝜎𝑖

𝑘
+ 𝜇𝑖

𝑘
− 𝜇 𝑖

(𝑘) 2

𝜎𝑖
(𝑘−1)

+ 𝑡(𝑘) exp 𝜅𝑖𝜇𝑖+1
(𝑘−1)

+ 𝜔𝑖

− 1 
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Constant drift 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑡(𝑘)𝑓𝑖 𝑥𝑖+1 ,    𝑖 = 1, … , 𝑛 − 1. 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

+ 𝑡(𝑘)𝜚𝑖 , 𝑡
(𝑘)𝑓𝑖 𝑥𝑖+1 ,    𝑖 = 1,… , 𝑛 − 1 

leads to 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
𝑘−1

+ 𝑡 𝑘 𝜚𝑖 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
𝑘−1
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AR(1) processes 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑡(𝑘)𝑓𝑖 𝑥𝑖+1 ,    𝑖 = 1,… , 𝑛 − 1. 

leads to 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
𝑘−1

 

𝑥𝑖
(𝑘)

 ~ 𝒩 𝑥𝑖
𝑘−1

+ 𝜑𝑖 𝑚𝑖 − 𝑥𝑖
𝑘−1

, 𝑓𝑖 𝑥𝑖+1 ,     𝑖 = 1,… , 𝑛 − 1,    

0 < 𝜑𝑖 < 1 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
𝑘−1

+ 𝜑𝑖 𝑚𝑖 − 𝜇𝑖
𝑘−1

 

87 



Variable drift 

leads to 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

+ 𝑡(𝑘)𝑧𝑖
(𝑘)

, 𝑡(𝑘)𝑓𝑖 𝑥𝑖+1 ,     𝑖 = 1, … , 𝑛 − 1 

𝑧𝑖
(𝑘)

~𝒩 𝑧𝑖
𝑘−1

, 𝑡(𝑘)𝜗𝑧𝑖
,     𝑖 = 1, … , 𝑛 − 1 

𝜇 𝑖
(𝑘)

≝ 𝜇𝑖
𝑘−1

+ 𝑡 𝑘 𝜇𝑧𝑖

(𝑘−1)
 

𝜇𝑧𝑖

(𝑘)
= 𝜇 𝑧𝑖

(𝑘)
+ 𝑡 𝑘

𝜋 𝑖
(𝑘)

𝜋𝑧𝑖

(𝑘)
𝜇𝑖
(𝑘)

− 𝜇 𝑖
(𝑘)

 

𝜋𝑧𝑖

(𝑘)
= 𝜋 𝑧𝑖

(𝑘)
+ 𝑡 𝑘 2

𝜋 𝑖
(𝑘)
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Note that the drift updates are driven by value prediction errors (VAPEs) 
 
 
 
 
 
 
 
while the 𝑥𝑖-updates are driven by volatility prediction errors (VOPEs)  
 
 
 
 
 
 
 

Variable drift: VAPEs and VOPEs 

𝜇𝑧𝑖

(𝑘)
= 𝜇 𝑧𝑖

(𝑘)
+ 𝑡 𝑘

𝜋 𝑖
(𝑘)

𝜋𝑧𝑖

(𝑘)
𝜇𝑖
(𝑘)

− 𝜇 𝑖
(𝑘)

, 

𝜇𝑖
(𝑘)

= 𝜇 𝑖
(𝑘)

+
1

2
𝜅𝑖−1 𝑣𝑖−1

(𝑘) 𝜋 𝑖−1
(𝑘)

𝜋𝑖
(𝑘)

𝛿𝑖−1
(𝑘)

 

𝛿𝑖
(𝑘)

≝
𝜎𝑖

𝑘
+ 𝜇𝑖

𝑘
− 𝜇 𝑖

(𝑘) 2

𝜎𝑖
(𝑘−1)

+ 𝑡(𝑘) exp 𝜅𝑖𝜇𝑖+1
(𝑘−1)

+ 𝜔𝑖

− 1 

VAPE 

VOPE 
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• Implements many of the models shown (and some not shown) 
 

• Can be downloaded at 
 

    http://www.translationalneuromodeling.org/tapas/ 

The HGF Toolbox 
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Summary 

• The HGF is a general Bayesian model for the learning of any changing 
quantity on the basis of a hierarchy of Gaussian random walks. 

 

• We can derive one-step updates that are interpretable, have the structure of 
precision-weighted prediction errors, and can be understood in terms of 
Rescorla-Wagner learning and Bayesian belief updating. 

 

• The resulting model is modular and scalable, can accommodate drift and 
autoregressive processes, and it can be combined with many different 
decision models. 

 

• The parameters of the learning model can reliably be estimated by at least 
four methods. 
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