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The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly under-
stood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychophar-
macological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic
modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover
design, 16 healthy human subjects performed a modified version of Posner’s location-cueing task in which the proportion of validly and
invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the param-
eters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that
underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements.
Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, compu-
tational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased
sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical
processing and in relation to the encoding of expected uncertainty or precision.
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Introduction
Allocation of attentional resources rests on predictions about the
likelihood of events. This is reflected in Posner’s location-cueing
paradigm, in which a cue indicates the most likely position of
a target (Posner, 1980). Human and animal studies suggest
that acetylcholine (ACh) regulates attentional processes by
shaping interactions between (top-down) attentional biases
and (bottom-up) sensory responses (McGaughy et al., 2002;
Bentley et al., 2011). It has been proposed that procholinergic
drugs shift the balance between stimulus-driven and expectation-
guided processing, most likely by increasing thalamocortical in-
put and favoring feedforward over feedback connections and

lateral inputs (Hasselmo and McGaughy, 2004; Sarter et al.,
2005). On theoretical grounds, it has been suggested that higher
cholinergic levels report uncertainty of the cue-induced informa-
tion and hence reduce expectation-guided biasing of attentional
orienting (Yu and Dayan, 2005). This is consistent with more
formal accounts of neuromodulation that regard changes in at-
tentional gain as mediating changes in the expected precision of
representations in cortical processing hierarchies (Feldman and
Friston, 2010).

Here, we extend existing theoretical approaches by applying
computational modeling to empirical data under a pharmacolog-
ical manipulation with galantamine. We characterized the effects
of predictions and uncertainty in a novel version of Posner’s
location-cueing paradigm using a hierarchical Bayesian model
that provides a principled prescription of how expectancies
are updated after new observations (Mathys et al., 2011; Vossel
et al., 2014). This model can be regarded as a variant of pre-
dictive coding, in which updates are determined by prediction
errors that are weighted by their salience or expected precision
(inverse uncertainty). Crucially, this model contains parame-
ters that allow for subject- and session-specific differences in
updating: in our specific case, these parameters determine
trial-by-trial changes in the belief that the target appears at the
cued location (parameter !) and changes in the superordinate
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hierarchical level describing beliefs about the volatility of
these changes (parameter "), respectively. A further parame-
ter (#2) encodes the mapping from these beliefs to overt
behavior.

By comparing model parameters between galantamine and
placebo sessions, we tested how cholinergic stimulation affects
the deployment of attention in relation to top-down predictions
and confidence in those predictions. We hypothesized that, if
ACh reports the expected precision of sensory prediction errors,
we should observe faster Bayesian updating under galantamine
because trial-wise updates are determined by precision-weighted
prediction errors, under our hierarchical Bayesian model. More
specifically, as detailed in Equation 1 below, the magnitude of the
update is governed by the ratio between the precision of the pre-
diction about the lower level and the precision of the belief at the
level in question. Thus, the putative effect of ACh (increased
uncertainty of top-down predictions or increased precision of
bottom-up inputs) should increase the magnitude of trial-wise
updates, and this should be reflected in higher values of the ap-
propriate model parameters that control the rate of evidence
accumulation. Our modeling approach also allows us to disam-
biguate between a cholinergic effect on belief updating (changes
in !) and a cholinergic effect on the sensitivity of responses to
updated beliefs (changes in #2).

Materials and Methods
Subjects. Seventeen healthy subjects gave written informed consent to
participate in the study. One subject was excluded because of side effects
in the galantamine session, which prevented completion of the task.
Therefore, data from 16 subjects (8 males, 8 females; age range 19 –30
years; mean age 23.4 years) were analyzed. All subjects were right-handed
and had normal or corrected-to-normal vision. The study was approved
by the NHS Research Ethics Committee (11/LO/1496). The following
exclusion criteria applied: history of neurological or psychiatric disease,
renal impairment, asthma, diabetes, intestinal diseases, cardiovascular
disease, known allergies to the ingredients of the galantamine or placebo
tablets, pregnancy or breast-feeding, intake of medication (other than
contraceptives), and current participation in other pharmacological
studies.

Drug administration and procedures. Each subject attended an initial
practice session, in which the task was explained and then performed.
Subsequently, each subject was tested in two experimental sessions ac-
cording to a within-subject crossover design. Testing in these two ses-
sions took place at the same time of day, with test sessions separated by at
least 4 d (mean ! SD, 7.2 ! 2.4 d). The elimination half-life of galan-
tamine is 7– 8 h (Huang and Fu, 2010). Drug administration was double-
blinded such that subjects received either a tablet containing 8 mg
galantamine (Reminyl) or a placebo (multivitamin) tablet that they in-
gested orally with water. The shape and color of the tablets were similar;
and to further ensure blinding, subjects were prevented from looking at
the tablets. Psychophysical testing started "60 min after drug adminis-
tration, when galantamine levels should be highest (Huang and Fu,
2010).

Physiological and subjective measures. Pulse rate and blood pressure
were assessed before and "50 min after drug administration. Subjective
drug effects were assessed 55 min after drug administration with visual
analog scales for the three factors “alertness,” “contentedness,” and
“calmness” (Bond and Lader, 1974). Moreover, the subjects completed a
symptom checklist asking for known side effects of galantamine in which
they rated feelings of nausea, headache, dizziness, drowsiness, feeling
faint, sweating, feelings of general discomfort, and abnormal tiredness on
a 7-point scale.

Changes in systolic/diastolic blood pressure and heart rate (differences
between predrug and postdrug administration) as well as sum scores for
“alertness,” “contentedness,” and “calmness” of the Bond and Lader
(1974) scale were compared with separate within-subject ANOVAs with

the factor drug (placebo, galantamine) using weight as a covariate. Wi-
lcoxon’s signed rank test was used to test for differences in physical side
effects (ordinal rating scale). Because this nonparametric test did not
allow us to consider the factor weight in the analysis, we additionally
analyzed correlations between weight and the rating score difference
between the drug and placebo session for each item using Spearman’s
rank correlation.

Stimuli and experimental paradigm. As in Vossel et al. (2014), we used
a modified version of a location-cueing Posner task. Stimuli were pre-
sented with a viewing distance of 60 cm. On each trial, two peripherally
located boxes were shown (1.9° wide and 8° eccentric in each visual field;
Fig. 1) that could contain target stimuli. A central diamond (0.65° eccen-
tric in each visual field) was placed between them, serving as a fixation
point. Cues comprised a 200 ms increasing brightness of one side of the
diamond, creating an arrowhead pointing to one of the peripheral boxes.
After an 800 ms stimulus onset asynchrony, a target appeared for 200 ms
in one of the boxes. The targets were circular sinusoidal gratings (1.3°
visual angle).

Subjects were instructed to maintain central fixation during the cue
period and to make a saccade to the target stimulus as quickly as possible.
The subjects were familiarized with the task in an initial practice session.
Here, they performed 100 trials with constant 80% cue validity (% CV)
and 121 trials with changes in % CV. The task in the two main experi-
mental sessions comprised 612 trials with block-wise changes in % CV
that were unknown to the subjects (Fig. 1). Each block with constant %
CV contained an equal number of left and right targets, counterbalanced
across valid and invalid trials. % CV changed after either 32 or 36 trials,
switching unpredictably to levels of 88%, 69%, or 50%. Subjects were
told in advance that there would be changes in % CV over the course of
the experiment but were not informed about the levels of these probabil-
ities or when they would change. Each subject was presented with the
same sequence of trials in each session (compare Vossel et al., 2014). To
jitter the intertrial interval and to allow for a direct comparison with a
separate fMRI study (Vossel et al., unpublished observations), the trials
were interspersed with 108 “null-trials,” where only the baseline display
(the fixation point and peripheral boxes) was presented. The task lasted
35 min and comprised 4 short rest periods.

Eye movement data recording and analysis. Eye movements were
recorded from the right eye with an EyeLink 1000 desktop-mounted

Figure 1. A, Illustration of the experimental task in which the location of a saccade target
(circular grating) was precued by arrows. B, The predictive value of the cue (i.e., the proportions
of valid and invalid trials) changed over the time of the experiment.

15736 • J. Neurosci., November 19, 2014 • 34(47):15735–15742 Vossel et al. • Acetylcholine and the Deployment of Attention



eye-tracker (SR Research) with a sampling rate of 1000 Hz. A 9-point
eye-tracker calibration and validation was performed at the start of the
experiment. The validation error was #1° of visual angle.

Eye movement data were analyzed with MATLAB (MathWorks) and
ILAB (Gitelman, 2002). Blinks were filtered out and pupil coordinates
within a time window of 20 ms around the blink were removed. After
target onset, the first saccade was analyzed. Saccades were identified
when the eye velocity exceeded 30°/s (Fischer et al., 1993; Stampe, 1993).
After this threshold was reached, the beginning of the saccade was de-
fined as the time when the velocity exceeded 15% of the trial-specific
maximum velocity (Fischer et al., 1993). The saccade amplitude needed
to subtend at least two-thirds of the distance between the fixation point
and the actual target location. Saccadic reaction time was defined as the
latency between target and saccade onset. Saccades in which the starting
position was not within a region of 1° from the fixation point and sac-
cades with a latency #90 ms were discarded from the analyses. Our
analyses focused on inverse reaction times (i.e., response speed [RS])
because RSs are more normally distributed (Carpenter and Williams,
1995; Brodersen et al., 2008).

Classical inference. To assess the effect of probabilistic context (true %
CV) and drug, mean RSs for each subject and for each % CV condition
were entered into a 2 (cue: valid, invalid) $ 3 (% CV: 50%, 69%, 88%) $
2 (drug: galantamine, placebo) within-subjects ANOVA. The order of
drug administration (placebo-drug, drug-placebo) was added as a
between-subject factor, and each subject’s weight was entered as a cova-
riate because psychopharmacological drugs can have dose-dependent
effects (Knecht et al., 2004; Newhouse et al., 2004; Chowdhury et al.,
2012). In this analysis, evidence for an impact of probabilistic context
would be reflected in a significant cue $ % CV interaction, whereas a
drug effect on the adaptation to the probabilistic context would be re-
flected by a significant cue $ % CV $ drug interaction. In addition to the
analysis of mean RS in the six conditions, accuracy (% correct responses)
in each condition was compared between drug and placebo session with
an analogous 2 $ 3 $ 2 ANOVA model with session order as between-
subject factor and weight as covariate. Condition-specific mean RSs un-
der galantamine and placebo were also calculated separately for the two
halves of the experiment and analyzed with a 2 (cue: valid, invalid) $ 3
(% CV: 50%, 69%, 88%) $ 2 (time: first half, second half) $ 2 (drug:
galantamine, placebo) within-subjects ANOVA (each % CV condition
was presented 3 times in each half; compare Fig. 1). Results are reported
at a significance level of p # 0.05 after Greenhouse–Geisser correction.

Bayesian modeling. Hierarchical Bayesian models have proven very
powerful for explaining the adaptation of behavior to probabilistic con-
texts in volatile environments (Behrens et al., 2007; den Ouden et al.,
2010; Iglesias et al., 2013; Vossel et al., 2014). As in our previous study

(Vossel et al., 2014), we used an adapted version of a generic hierarchical,
approximately Bayes-optimal learning scheme proposed by Mathys et al.
(2011) and used RS as the behavioral measure for estimating the model
parameters. Throughout the manuscript, we refer to this Bayesian hier-
archical model as the perceptual model because it provides a mapping
from hidden states of the world (x) to sensory inputs (Daunizeau et al.,
2010a, b; Vossel et al., 2014) (Fig. 2). The response model describes the
mapping from the subject’s beliefs, following inversion of the perceptual
model (i.e., inference on the hidden states of the world based on sensory
inputs), to observed responses (i.e., saccadic RS) (Fig. 2).

A detailed description of the perceptual and response models was
provided by Mathys et al. (2011) and Vossel et al. (2014). The perceptual
model comprises three states denoted by x that evolve at the second and
third level as hierarchically coupled Gaussian random walks. In other
words, the probability distribution of the values of x2 and x3 on a given
trial (t) is centered on the value from the previous trial (t % 1) with a
variance that is determined by the state of the next higher hierarchical
level and/or subject-specific model parameters (Fig. 2, equations). The
state x1 represents trial-wise events (sensory inputs), which in the present
paradigm consisted of either a validly or invalidly cued target (with x1 &
1 for valid and x1 & 0 for invalid trials). The probability distribution of
x1 & 1 corresponds to the subjects’ estimate of % CV (i.e., the tendency
that the target will appear at the cued location) and is governed by the
supraordinate state of the model x2. x2 is a real number and the proba-
bility distribution of x1 given x2 is described by a logistic sigmoid (soft-
max) function, so that the states x1 & 0 and x1 & 1 are equally probable
when x2 & 0. The variance of the update in x2 (i.e., how fast the belief
about cue validity can change from trial to trial) is determined by two
quantities: x3 (the next level of the hierarchy) and a parameter ! that can
differ across subjects (or test sessions). In turn, the dispersion of the
random walk (variance of the update) of x3 is determined by the subject/
session-specific parameter ". The session-specific parameters ! and "
were estimated from the individual RS data (see below). To map from
sensory inputs to probabilistic representations or beliefs, the perceptual
model needs to be inverted to obtain posterior densities for the three
states x. In the following, the sufficient statistics of the subject’s posterior

belief will be denoted by $ (mean) and % (variance) or & '
1

%
(preci-

sion). We use the hat symbol (ˆ) to denote predictions before the obser-
vation of x1 on a given trial.

As described by Mathys et al. (2011), variational model inversion
under a mean field approximation yields simple analytical update equa-
tions, where belief updating rests on precision-weighted prediction er-

Figure 2. Illustration of the perceptual and response models. The perceptual model comprises three hierarchical states (x1, x2, and x3). x2 and x3 evolve in time as hierarchically coupled Gaussian
random walks (see equations on the left), and x2 determines the probability that the target appears at the cued location (x1 & 1). The session-specific parameters ! and " affect the updating of
the beliefs about the states x and are estimated from individual RS data on the basis of the attentional weight ('&̂1( that depends on the precision on the first level of the (inverted) perceptual
model. Here, RS is supposed to vary linearly with ('&̂1( in valid trials and with 1 ) ('&̂1( in invalid trials (right). Whereas #1* and#1i determine the intercepts (i.e., the absolute level of RS)
on valid and invalid trials, respectively, #2 governs the slope of the linear function and hence the strength of the association between RS and the attentional weight ('&̂1( as derived from the
perceptual model. Ellipses represent constants; diamonds represent quantities that change with time (i.e., that carry a time index). Hexagons, like diamonds, represent quantities that change with
time but additionally depend on their previous state in time in a Markovian fashion.
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rors. The update of the posterior mean $ at
level i in the hierarchy on trial t has the follow-
ing general form:

)$i
't(*

&̂ i%1
't(

&i
't(+i%1

't( (1)

This update equation bears structural similar-
ity to reinforcement learning schemes, such as
the Rescorla Wagner model (Rescorla and
Wagner, 1972) in which prediction errors
'+i%1

't( ( are weighted by a learning rate. One cru-
cial difference to these models is, however, that

the learning rate in the present model
&̂i ) 1

't(

&i
't( is

not fixed but varies with time as it adapts to
the estimated volatility (i.e., the values at
the higher levels of the model). This allows
for quicker learning at times when the envi-
ronment changes relative to more stable
periods.

At the second level of the model, the preci-
sion weighting has a slightly different form be-
cause of the sigmoid transform that relates the
second level to the first as follows:

)$2
't(*

&̂1
't(

&̂2
't(&̂1

't( , 1
+1

't( (2)

with

&̂1
't(

&̂2
't(&̂1

't( , 1
' %2

't(

and

+1
't( ' $1

't( ) $̂1
't(

%2
't( can be regarded as a time-varying learning rate. +1

't( is the prediction
error at the first level (i.e., the difference between observed outcome $1

't(

and prediction $̂1
't( ' s'$2

't%1((. These update equations provide ap-
proximate Bayes optimal rules for the trial-by-trial updating of the beliefs
that underlie the subject’s estimate of the probability that the target will
appear at the cued location on a particular trial (this is an individualized
Bayes optimality, in reference to the session-specific values for the pa-
rameters ! and "). At the third level of the model, the update equation
can again be partitioned into a learning rate and prediction error term
(+2

't() as follows:

)$3
't(*

e$3
't%1(+!

2

&̂2
't(

&3
't(+2

't( (3)

A response model was used to map from these posterior beliefs to ob-
served responses (Fig. 2). In previous work (Vossel et al., 2014), we
compared three alternative response models and observed in two inde-
pendent datasets that the most plausible model was based upon the pre-
cision of the prediction on the first level of the perceptual model &̂1. In
this model, &̂1 determines the attentional weight ('&̂1( (between 0 and 1)
allocated to the cued location. The precision (inverse uncertainty or
variance) of the prediction of a binary outcome (in our case at the first
level, &̂1) has a minimal value of 4 when $̂1 ' 0.5 (both locations are
equally likely) and approaches infinity as $̂1 approaches 1. The most
parsimonious way to ensure that ('&̂1( varies between 0 and 1 is to define
( as the logistic sigmoid of &̂1, minus its minimum. Because the cue
becomes a counterindication of outcome location when $2 falls to #0 (or
equivalently, when &̂1 drops to #0.5), a suitable definition of ( for the
whole range of &̂1 is as follows:

('t( ' s'sign'$2
't%1(('&̂1

't( ) 4((. (4)

This ensures that attention to the cued location falls to 0 as $̂1 approaches 0.
Trial-wise, RS can then be described as an affine function of ('&̂1(:

RS ' ! #1v , #2('&̂1( for x1 ' 1 (i.e., valid trial)
#1i , #2(1 ) ((&̂1)) for x1 ' 0 (i.e., invalid trial)

(5)

In this response model, the intercepts #1* and #1i determine the baseline
(i.e., no attention to outcome location) speed of responding in the two
conditions. #2 quantifies the slope of the affine function (i.e., the strength
of the increase in RS with increased attentional weight ('&̂1( (compare
Fig. 2).

The perceptual model parameters ! and ", as well as the response
model parameters #1*, #1i and #2 were estimated from the trial-wise RS
measures using the BFGS optimization algorithm as implemented in the
HGF toolbox (part of the open source TAPAS software suite: http://www.
translationalneuromodeling.org/tapas/). This enabled us to evaluate the
posterior densities of the model parameters under the Laplace assump-
tion. A galantamine effect on the response model parameter #2 (i.e., the
sensitivity to ('&̂1() would reflect a nonspecific change in RSs with at-
tentional gain. In contrast, altered Bayesian updating would be reflected
in changes of the perceptual model parameters ! or ". In other words,
testing for drug (session) effects of these parameters allowed us to disam-
biguate between an effect on how RS depends upon beliefs and a drug
effect on the accumulation or updating of beliefs per se.

These effects were tested using classical ANOVAs on the model parame-
ters. First, a 2 (drug: placebo, galantamine) $ 3 (model parameter: !, ", #2)
within-subject ANOVA with session order as between-subject variable and
weight as covariate was calculated. In addition, separate ANOVAs were cal-
culated for the three different model parameters to elucidate the origin of the
drug $ model parameter interaction effect. Again, results are reported at a
significance level of p # 0.05 after Greenhouse–Geisser correction.

Results
Classical inference
In total, 91.5 ! 2.08% (!SEM) and 88.7 ! 2.98% of trials were
analyzed in placebo and galantamine sessions, respectively. Ex-
cluded trials were due to anticipated responses (placebo: 1.5 !
0.5%; galantamine: 2.1 ! 0.7%), incorrect or missing saccades
(placebo: 0.6 ! 0.2%; galantamine: 1.3 ! 0.4%), saccades not
starting from the fixation zone (placebo: 3.3 ! 1.0%; galan-
tamine: 3.7 ! 0.9%), or missing data points (e.g., due to blinks)

Figure 3. Illustration of the three-way interaction between cue, % CV, and drug for both halves of the experiment. For simplic-
ity, relative RS differences between valid and invalid trials are shown. RS costs were related to the overall speed of responding and
are expressed in percentage: (RS valid % RS invalid)/overall RS $ 100. Error bars indicate SEM.
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(placebo: 3.1 ! 1.0%; galantamine: 4.2 ! 1.6%). The percentage
of correct responses in the six different conditions in the drug and
placebo session was analyzed with a 2 (cue: valid, invalid) $ 3 (%
CV: 50%, 69%, 88%) $ 2 (drug: galantamine, placebo) within-
subjects ANOVA with session order as between-subject factor
and weight as covariate. This analysis did not reveal any signifi-
cant effects.

With regard to mean RS in the different experimental condi-
tions, the 2 (cue: valid, invalid) $ 3 (% CV: 50%, 69%, 88%) $ 2
(drug: galantamine, placebo) within-subjects ANOVA with ses-
sion order as between-subject factor and weight as covariate
revealed a significant drug $ session order interaction (F(1,13) &
27.3, p # 0.001). This interaction resulted from a general speed-
ing of responses in the second test session. Importantly, we ob-
served a cue $ % CV $ drug interaction effect (F(1.62,21.12) & 5.1,
p & 0.021), which was modulated by the weight of the subjects
(F(1.63,21.23) & 4.9, p & 0.023).

To test for effects of the time on task, we repeated the ANOVA
with the additional factor time (first half, second half). This anal-
ysis showed a trend toward a cue $ % CV $ time $ drug inter-
action effect (F(1.67,21.7) & 3.25, p & 0.066), which was modulated
by weight (F(1.67,21.7) & 3.41, p & 0.059). Figure 3 illustrates this
effect by plotting the relative RS differences between valid and
invalid targets (i.e., RS costs; relative to the overall RS) as a func-
tion of true % CV and drug for the two halves of the experiment.
It can be seen that the RS costs due to invalid cueing are affected
by % CV, with this effect more pronounced under galantamine
than under placebo (especially in the first half of the experiment).
This interaction effect was not modulated by the order of drug
administration.

Together, the results from classical inference suggest a greater
impact of the volatile probabilistic context (i.e., true % CV) on RS
under galantamine. This pharmacological effect was modulated
by the weight of the individual subjects, with stronger effects in
lighter subjects, suggesting a dose-dependent effect. The order of
drug administration did not affect the observed effects and only
generally affected the overall speed of the response, which in-
creased from the first to the second session.

It should be noted that trials were averaged across the un-
known (experimentally manipulated) probability levels for the
above ANOVAs. It is likely that the trials were heterogeneous in
terms of subjective probability estimates, and our data suggest
that these differ between the galantamine and placebo condi-
tions. Below we test this hypothesis, asking whether the empiri-
cally observed differences in RS costs might reflect drug-induced
alterations in the parameters of the Bayesian perceptual or the
response model. A greater impact of true % CV under galan-
tamine on RS could in principle arise from multiple factors. Cho-
linergic stimulation with galantamine could lead to a faster
updating of beliefs after the observation of new data (i.e., to a
higher learning rate). Alternatively, galantamine could increase
the sensitivity of the overt behavioral response to the trial-wise
beliefs without affecting updating or inference. In what follows,
we tried to disambiguate these two hypotheses by modeling the
empirically observed single-trial RSs in terms of hierarchical
Bayesian updating.

Bayesian modeling
The ANOVA on the model parameters !, ", and #2 under pla-
cebo and galantamine, respectively (using weight as covariate and

Figure 4. Illustration of the time course of the posterior expectations at the third level of the Bayesian model ($3, top) and attentional gain allocated to the cued location ('&̂1( (bottom), based
upon the group average values for ! and ". Because of the dependency of the galantamine-induced increase of !, we here exemplarily show the results for a normalized weight of 68 kg (placebo
session: ! &%6.2, " ' 0.60; galantamine session: ! &%5.4, " ' 0.61). It can be seen that, under galantamine (red line, with a higher !), the changes in ('&̂1( in the different true
% CV conditions are more pronounced than under placebo (blue line). The same sequence of valid and invalid trials was presented each subject and in each experimental session because the
parameters of the learning process depend on the exact sequence of trials used.
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session order as between-subject factor),
revealed a significant main effect of drug
(F(1,13) & 7.0, p & 0.020) and a drug $
weight interaction (F(1,13) & 6.64, p &
0.023). Importantly, however, we ob-
served a significant drug $ parameter in-
teraction effect (F(1.04,13.5) & 6.6, p &
0.022) that was modulated by the weight
of the subjects (F(1.04,13.5) & 6.2, p &
0.026). Separate post hoc ANOVAs for
each model parameter revealed a signifi-
cant increase of ! under galantamine
(main effect of drug: F(1,13) & 6.9, p &
0.021) and a significant drug $ weight in-
teraction effect (F(1,13) & 6.5, p & 0.024),
but no significant effect on " (main effect
of drug: p & 0.57; drug $ weight interac-
tion: p & 0.61) or #2 (main effect of drug:
p & 0.19; drug $ weight interaction: p &
0.20). To illustrate the effects of galan-
tamine, we plotted the trajectories of the
third and first level of the Bayesian model
for a normalized weight of 68 kg (Fig. 4).
At the third level of the model (represent-
ing the phasic volatility of cue validity
changes; Fig. 4, top), the values of $3 are
increased under galantamine, relative to
placebo. Our results, however, show that
these changes are caused by faster updat-
ing at the second level (i.e., higher !) and
not by larger fluctuations at the third level
(i.e., higher "). With a higher value of pa-
rameter !, the values of ('&̂1( change
more quickly from trial to trial under gal-
antamine, resulting in a faster adaptation
to changes in probabilistic context (Fig. 4,
bottom). This accelerated adaptation to the
experimentally manipulated cue validity
levels explains the greater dependency of RS
costs on true cue validity levels under galan-
tamine (compare Fig. 3).

To illustrate the correspondence between
theobservedandpredictedresponses,weplot-
ted observed and predicted RSs as a function
of the precision-dependent attentional weight
('&̂1( (calculated on the basis of the group
mean model parameters ! and " in each ses-
sion). Trials were binned according to values of ('&̂1( in 0.1 steps. In
both sessions, observed RSs showed a good correspondence with the
RSs predicted by our model (Fig. 5).

Physiological and subjective measures
Galantamine did not affect the changes in systolic or diastolic
blood pressure from predrug to postdrug/placebo administra-
tion, and the covariate weight did not interact with this effect (all
p values ,0.14). The deceleration of the heart rate from predrug to
postdrug/placebo administration was less pronounced under galan-
tamine, and this effect was modulated by the weight of the subjects
(main effect of drug: F(1,14) & 5.7, p & 0.032; drug $ weight inter-
action effect: F(1,14) & 5.1, p & 0.041).

Ratings for “alertness,” “calmness,” and “contentedness” were
not affected by galantamine, and no drug $ weight interaction
effects were observed (p , 0.15). Wilcoxon’s signed rank tests for

the different symptoms on the side effects rating scale revealed
that feelings of nausea (Z & %2.37, p & 0.018), dizziness (Z &
%2.49, p & 0.013), feeling faint (Z & %2.33, p & 0.02), and
general discomfort (Z & %2.6, p & 0.009) were higher under
galantamine than under placebo. However, the overall severity of
the symptoms was low because most subjects rated the side effects
as “very slight” or “slight.” Moreover, there were no significant
correlations between the difference scores for the ratings of the
drug and placebo session and the subjects’ weight.

Discussion
By using a novel version of Posner’s location-cueing task, with
changes of the % CV over time, we observed that an enhancement
of cortical cholinergic levels via galantamine led to a greater im-
pact of probabilistic context on saccadic RS. The application of a
Bayesian learning model for characterizing the trial-wise beliefs,

Figure 5. Illustration of observed and predicted RS in the placebo and galantamine session, respectively. Trials were grouped in
0.1 bins according to the attentional weights ('&̂1( as derived from the perceptual model with the group average model
parameters. Mean observed RS was calculated for these binned trial categories (diamonds). Predicted RS in valid and invalid trials
was calculated on the basis of the mean response model parameters (solid lines).

15740 • J. Neurosci., November 19, 2014 • 34(47):15735–15742 Vossel et al. • Acetylcholine and the Deployment of Attention



about the % CV and its changes over time, and the precision of
those beliefs, revealed this effect was best explained by faster up-
dating under galantamine, as reflected in higher values of the
model parameter !. These psychopharmacological effects were
dependent on the weight of the subjects (i.e., the effective dose of
galantamine).

Our results suggest that galantamine affected the way in which
beliefs were formed on the basis of trial history; specifically, the
accumulation of sensory evidence in proportion to the expected
precision of volatile contingencies. In other words, galantamine
affected the computations underlying attentional deployment
(rather than influencing the mapping from beliefs to responses,
i.e., the response model parameter #2). Interestingly, we did not
observe a drug-related speeding of responses specifically to inval-
idly cued targets, as has been shown in studies investigating the
effects of nicotine in cueing paradigms with explicit knowledge of
probabilistic context (Phillips et al., 2000; Thiel et al., 2005;
Vossel et al., 2008). Our new finding suggests a more complex
effect of enhanced cholinergic levels, so that the pharmacological
effects of cholinergic agents in probabilistic cueing paradigms are
critically influenced by the sequence in which the trials are pre-
sented. This interpretation of cholinergic action in the brain is
also in accord with the assumption of previous theoretical no-
tions posing that ACh controls the speed of the memory update
(i.e., the learning rate) (Doya, 2002; Hirayama et al., 2004).
Moreover, a separate line of research has suggested that ACh
enhances synaptic plasticity, thereby facilitating the adaptation of
neuronal systems to dynamic environments (Metherate and
Weinberger, 1990; Kilgard and Merzenich, 1998; Thiel et al.,
2001, 2002a, b).

It should be mentioned, however, that the action of ACh on
attention may depend on the specific task used. For example, we
cannot rule out that the effects of ACh may be different in para-
digms with and without uncertainty about cue validity. This
means the generality of our observed effects needs to be verified
in further studies. The theory of visual attention (Bundesen,
1990) is an influential computational approach that quantifies
putative components of attentional processing. It has been shown
in whole and partial report paradigms (where subjects have to
report targets with a specific feature, e.g., color; and ignore dis-
tractors) that nicotine improves perceptual thresholds but
impairs subsequent perceptual speed as well as top-down atten-
tional selectivity (i.e., the ability to distinguish between targets
and distractors) (Vangkilde et al., 2011). However, to our knowl-
edge, pharmacological effects on the updating of the theory of
visual attention parameters as a result of learning have not yet
been investigated. The theory of visual attention also quantifies
attentional weights that determine the likelihood that a subject
attends to the stimulus. It has been shown that the pertinence
(priority) values, which affect these attentional weights, undergo
changes if a former target stimulus turns into a distractor (Kyl-
lingsbaek et al., 2001), and it would be interesting to relate the
speed of this update to cholinergic neurotransmission.

Which mechanisms could lead to a faster updating of beliefs
under galantamine? According to the update rules of our Bayes-
ian model, faster trial-wise updating at the second level is deter-
mined by a ratio of precisions (compare Eqs. 1 and 2). In other
words, either increased precision of the prediction about in-
puts from the lowest level '&̂1( or decreased precision of the
belief at the second level (because this decreases the denomi-
nator &̂2&̂1 , 1 in Eq. 2) could cause faster updates of $2

(and consequently ('&̂1(). It has recently been shown that
galantamine boosts bottom-up sensory input in primary au-

ditory cortex in a mismatch negativity paradigm (Moran et al.,
2013). In particular, using simulated neuronal responses
within the free energy minimization framework and empirical
electroencephalographic data, this study suggests that galan-
tamine enhances the gain of the superficial pyramidal cells in
primary auditory cortex, thereby biasing perceptual inference
toward bottom-up sensory inputs. Moreover, a recent neuro-
nal network model addressing cholinergic effects on atten-
tional modulation in visual cortex (Deco and Thiele, 2011) has
claimed that nicotinic neurotransmission increases ascending
thalamocortical input. This effect has also been investigated
experimentally: in vitro recordings in rodent brain slices have
shown that nicotine selectively enhances thalamocortical syn-
apses (Gil et al., 1997). In vivo recordings in macaques revealed
that nicotine enhances the gain of responses to visual stimuli
in the thalamorecipient layer 4c of V1 (Disney et al., 2007).

A second mechanism causing faster updates of attentional
expectancies is a reduced precision at the second level of the
model (i.e., at higher levels of the cortical hierarchy). Psycho-
pharmacological neuroimaging studies in humans have indeed
reported activation decreases in areas such as the parietal cortex
in response to nicotine (e.g., Thiel et al., 2005; Vossel et al., 2008),
but this effect is predominantly seen during invalidly cued trials
and interpreted as facilitated attentional shifting or enhanced
processing efficiency. In contrast, studies using cholinesterase
inhibitors have reported an enhancement of voluntary atten-
tional modulation at the behavioral and neural level (Rokem et
al., 2010; Bauer et al., 2012). Similarly, muscarinic blockade with
scopolamine reduces spatial attentional top-down modulation of
responses to visual stimuli in visual cortex (Herrero et al., 2008),
and theoretical modeling has shown that inhibitory drive by mus-
carinic receptors may effectively render the system more sensitive
to feedback influences (i.e., attentional modulation) (Deco and
Thiele, 2011). The combination of psychopharmacological chal-
lenges with neuroimaging techniques with higher temporal res-
olution (such as EEG or MEG) will be required to elucidate the
exact nature of cholinergic effects on the cue- and target-related
responses to reveal top-down and bottom-up influences. More-
over, the use of the cholinesterase inhibitor galantamine in the
present study precludes conclusions about the differential effects
of nicotinic versus muscarinic cholinergic neurotransmission;
further studies with selective agonists or antagonists are needed
to disentangle these contributions.

Despite the nonselective affinity of galantamine, our results
provide a new perspective on the effects of cholinergic neu-
rotransmission on attentional processing by showing that cho-
linergic enhancement affects the computational mechanisms
underlying the updating of perceptual beliefs according to Bayes-
ian principles. Future studies should investigate at which level in
the cortical hierarchy cholinergic stimulation exerts its primary
effects and whether nicotinic and muscarinic cholinergic neu-
rotransmission is differentially involved in these processes.
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