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Uncertainty: a shamelessly artificial example

Imagine the following situation:

You're on a boat, you're lost in a storm and trying to get back to shore. A
lighthouse has just appeared on the horizon, but you can only see it when
you're at the peak of a wave. Your GPS etc., has all been washed overboard,
but what you can still do to get an idea of your position is to measure the
angle between north and the lighthouse. These are your measurements (in
degrees):

76,73,75,72,77
What number are you going to base your calculation on?

Right. The mean: 74.6. How do you calculate that?
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Updates to the mean

The usual way to calculate the mean x of x4, x5, ..., x;, is to take

£

1
X = — Xi
n

=1

This requires you to remember all x;, which can become inefficient. Since the
measurements arrive sequentially, we would like to update x sequentially as
the x; come in - without having to remember them.

It turns out that this is possible. After some algebra (see next slide), we get

Xn+1 = Xp + n+ 1 (xn+1 - Jzn)
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Updates to the mean

Proof of sequential update formula:

n+1 n
b . ; ¥ = xn+1 xn+1 n 1 ¥ =
n+l n+1Z1 Y n+1 n+1Z T n+1 n+1nz:1 l
l= 1=
N — —
zxn
_ Xn41 n Xn+1 n _ n+l1l

= + X, = X, + + X, — X, =
n+1 n+1"" ""n4+1 n+1"" n+17"

= n+n—+1(xn+1+(n—n—1)fn) :fn+n—_|_1(xn+1_fn)

g.e.d.
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Uncertainty: updates to the mean

The seqgential updates in our example now look like this:

T T T i >
72 73 74 75 7|6 77

_ 1 _
X4 =746 + 7 (72 —74.6) =74

1
. _ 1
%, = 76 +5 (73 = 76) = 745 %5 =74+ (77 = 74) = 746

1 _
Ty =745+ (75— 74.5) = 746
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What are the building blocks of the updates
we've just seen?

new input

prediction error

prediction

weight (learning rate)
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Is this a general pattern?

e More specifically, does it generalize to Bayesian inference?

e «Bayesian inference» simply means inference on uncertain quantities
according to the rules of probability theory (i.e., according to logic).

e Agents who use Bayesian inference will make better predictions
(provided they have a good model of their environment), which will give
them an evolutionary advantage.

e We may therefore assume that evolved biological agents use Bayesian
inference, or a close approximation to it.

e So is Bayesian inference based on predictions that are updated using
uncertainty-weighted prediction errors?
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Updates in a simple Gaussian model

Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference.

Before we make the next observation, our belief about the true angle 9 can be described by
a Gaussian prior:

p(9) ~ N (ug, m5™)
The likelihood of our observation is also Gaussian, with precision m,:
p(x9) ~ N, mzt)

Bayes’ rule now tells us that the posterior is Gaussian again:

p(x|9)p(9)
[ p(x|9Np)dY’

p(Ix) = ~ N(#mx: 7T5|1x)
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Updates in a simple Gaussian model

Here’s how the updates to the sufficent statistics u and m describing our belief look like:

T9|x = Ty + 1,

/ prediction error
#19|x H9

how much we're learning here

predlCtlon Welght (learmng rate)— how much we already know

So it's the same story all over again: the mean is updated by an uncertainty-weighted (more
specifically: precision-weighted) prediction error.

The size of the update is proportional to the likelihood precision and inversely proportional
to the posterior precision.

This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian
updates for all exponential families of likelihood distributions with conjugate priors (i.e., to

all formal descriptions of inference you are ever likely to need).
9
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The analogy with simple mean updating goes further

Reminder (Gaussian update):

Tle Tl

(e —py) =y + ——/—— (x — to)
7T19|x Ty +7Tg

Hojx = Uy T

e Reducing by m.the fraction of precisions that make the learning rate, we get

1
.u19|x=.u19+7'[_19+1(x_ﬂl9)
Tg

e This is again our equation for updating an arithmetic mean, but with n replaced by 7;—19.
&

e This shows that Bayesian inference on the mean of a Gaussian distribution entails nothing
more than updating the arithmetic mean of observations with 7;—‘9 =:v as a proxy for the

&

number of prior observations, i.e. for the weight of the prior relative to the observation.

10
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Generalization to all exponential families of distributions

e Many of the most widely used probability distributions are families of exponential
distributions.

e For example, the Gaussian distribution is an exponential family of distributions (and so are the
beta, gamma, binomial, Bernoulli, multinomial, categorical, Dirichlet, Wishart, Gaussian-gamma, log-Gaussian, multivariate

Gaussian, Poisson, and exponential distributions, among others). This means it can be written the following
way:

p(x|9) = h(x) exp(n(I) - T(x) — A(I)) =

with

1 (x=w?
\V2mo =P 20

1 1\ 1
X =X, 9= (M, O')T, h(x) = E, )7(19) = <§, —%> , T(x) = (x,xz)T' A(‘ﬂ) = ,U? +%

e This allows us to look at Bayesian belief updating in a very general way for all exponential
families of distributions.

11
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Generalization to all exponential families of distributions
e Our likelihood is an exponential family in its general form:
p(x[9) = h(x) exp(m(I) - T(x) — A(I))
e The vector T(x) (a function of the observation x) is called the sufficient statistic.

e For the prior, we may assume that we have made v observations with sufficient statistic ¢:

p(tﬂf, V) = Z(f, V) exp (V (1] (19) : f — A(ﬂ))) (where z(§,v) is a normlization constant)

e [t then turns out that the posterior has the same form, but with an updated ¢ and v
replaced with v + 1:

p@1x,§,v) = 2(§,v + D exp((v + DM@ - §' — A(9)))

o (T(x) —
§=f+—=Tx® -9

12
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Proof of the update equation

posterior likelihood  prior

p(@d|x,§,v) « p(x|9) p(I|§,v)

= h(x) expM(@) - T(x) — A®))z(§,v) exp(v(n(d) - § — A(¥)))
o exp(n(9) - (T(x) +v§) — (v + DA®Y))

1
= exp ((v +1) <n(0) 7 (T() +v) - A(ﬂ)))

1
= exp ((v +1) (11(19) . (f + T (Tx) +vé—(v+ 1){)) — A(ﬂ)))

= exp ((v +1) <n(a) - (f+v+1<r<x) : $)) —A(ﬂ)))
=:§r

= p@IxEv) =2 V) exp (V(n(®) - § - A®)))

. [ [ 1
with v/ =v + 1, E.—f+v+1(T(x) 3]
g-e.d.

13
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Some examples

Univariate Gaussian model with unkown mean but known precision (our example from
the beginning):

T(x) =x

e This means updating beliefs about the mean simply requires tracking the mean of
observations

e Univariate Gaussian model with unkown mean and unkown precision:
T(x) = (x,x*)"

e Updating beliefs about both mean and precision of a Gaussian requires tracking the means
of observations and squared observations; this amounts to the first and second moments by
which a Gaussian distribution is fully characterized.

o . T
e In the multivariate Gaussian case we have T(x) = (x, xxT)

14
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Some examples

Bernoulli model (one out of two possible outcomes, coded as 0 and 1; e.g., coin flipping):
T(x) =x

The prior here turns out to be a beta distribution corresponding to v pseudo-observations
with mean £. All we need to do to get the posterior (i.e., to update our belief) is to update
the mean as new observations come in.

Categorical model (one out of several possible outcomes, with the observed outcome
coded as 1, the rest as 0)

T(x) =x

The prior and posterior here are Dirichlet distributions, and again, all we need to do to
update beliefs that have a Dirichlet form is to track the means of observed succeses (1) and
failures (0).

15
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Some examples

Beta model (an outcome bounded between 0 and 1):
T(x) = (Inx,In(1 —x))T
Gamma model (an outcome bounded below at 0):

T(x) = (Inx,x)T

Now that we have dealt with beliefs about states that are binary (Bernoulli), categorical,
bounded on both sides (beta), bounded on one side (gamma), and unbounded (Gaussian),
we have most kinds of states we can have beliefs about.

All Bayesian (i.e., probabilistic, rational) updates of such beliefs take the form of
precision-weighted prediction errors.

16
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Limitations

e Examples of distributions that are not exponential families: Student’s ¢, Cauchy

e These distributions are popular because of their «fat tails». However, fat tails can
also be achieved with appropriate hierarchies of Gaussians (cf. the hierarchical
Gaussian filter, HGF)

e A further kind of distributions that are not exponential families are found in
mixture models.

e Such models are popular because of they provide multimodal distributions. But
again, appropriate hierarchies of distributions may save the day.

17
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“Every good regulator of a system must be a
model of that system” (Conant & Ashby, 1970)

Abstract:

«The design of a complex regulator often includes the making of a model of the
system to be regulated. The making of such a model has hitherto been regarded as
optional, as merely one of many possible ways.

In this paper a theorem is presented which shows, under very broad conditions, that
any regulator that is maximally both successful and simple must be isomorphic with
the system being regulated. (The exact assumptions are given.) Making a model is
thus necessary.

The theorem has the interesting corollary that the living brain, so far as it is to be
successful and efficient as a regulator for survival, must proceed, in learning, by the
formation of a model (or models) of its environment.»

18
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Systems theory as the conceptual bridge between clinical
phenomena and neuronal pathophysiology

e Belief updating by precision-weighted prediction errors provides a conceptual
framework in which both clinical phenomena and neurobiological findings can be
interpreted.

e For examples of this approach, see Adams et al. (2013) (psychosis), or Lawson et
al. (2014), Quattrocki & Fristion (2014) (autism).

e Summary: the mind needs to be a model of its environment = needs to
perform Bayesian inference = needs to use precision-weighting of prediction
errors = if that's all the mind does, it's also all that can go wrong = both
clinical manifestations and the neurobiology of psychiatric disorders must be
interpretable in these terms.

e Now that we have this conceptual framework, we can start filling it with content.

19
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Does inference as we've described it adequately
describe the situation of actual biological agents?

Agent | World .
S No, the dynamics

Sensory input -
are missing!

Inferred
hidden states

True
hidden states

Action

20



- = .
\SE=ES)

) MAX PLANCK UCL CENTRE

Y E—— I E— for Computational Psychiatry and Ageing Research

What about dynamics?

e Up to now, we've only looked at inference on static quantities, but
biological agents live in a continually changing world.

e In our example, the boat’s position changes and with it the angle to the
lighthouse.

e How can we take into account that old information becomes obsolete? If
we don’t, our learning rate becomes smaller and smaller because our
eqations were derived under the assumption that we're accumulating
information about a stable quantity.

21
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What's the simplest way to keep the learning
rate from going too low?

Keep it constant!

So, taking the update equation for the mean of our observations as our point of
departure...

: 1,
e .. wesimply replace - with a constant a:

tn = Un-1 + a(n — p_1).

This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that
led Rescorla & Wagner (1972) to their formulation].

22
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Does a constant learning rate solve our problems?

Partly: it implies a certain rate of forgetting because it amounts to taking
1 .
only then = - last data points into account. But...

e .. if the learning rate is supposed to reflect uncertainty in Bayesian
inference, then how do we

e (a) know that a reflects the right level of uncertainty at any one time, and
e (b) account for changes in uncertainty if « is constant?

e What we really need is an adaptive learning that accurately reflects
uncertainty.

23
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Needed: an adaptive learning rate that
accurately reflects uncertainty

e This requires us to think a bit more about what kinds of uncertainty we are dealing
with.

e A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour &
Bossaerts, 2011):

e (a) outcome uncertainty that remains unaccounted for by the model, called risk by
economists (. in our Bayesian example); this uncertainty remains even when we
know all parameters exactly,

e (b) informational or expected uncertainty about the value of model parameters (7,
in the Bayesian example),

e (c) environmental or unexpected uncertainty owing to changes in model parameters
(not accounted for in our Bayesian example, hence unexpected).

24
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An adaptive learning rate that accurately
reflects uncertainty

e Various efforts have been made to come up with an adaptive learning rate:
- Kalman (1960)
— Sutton (1992)
— Nassar etal. (2010)
- Payzan-LeNestour & Bossaerts (2011)
- Mathysetal. (2011)
- Wilson et al. (2013)

e The Kalman filter is optimal for linear dynamical systems, but realistic data
usually require non-linear models.

e Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us
to derive update equations that are optimal in the sense that they minimize
surprise.

25
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The hierarchical Gaussian filter (HGF)

o (:49)

x,(lk) ~N (x,(lk_l), 19)

xék—l)

k _
2O (207, e

(k—1)
()
k _
p(xik)) (k-1) xé )NN (xgk 1);f2(x3)>
x5
k _
xi ) N(xik Y f1(x2))
xik—l)

26
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The hierarchical Gaussian filter (HGF)

e Atthe outcome level (i.e., at the very bottom of the hierarchy), we have
u® ~ v (xik),ﬁljl)
e This gives us the following update for our belief on x; (our quantity of interest):
=7l + 1,

W _ k-1, Tu (g9 (-1
i = g+ = (u® - )
1

e The familiar structure again - but now with a learning rate that is responsive to
all kinds of uncertainty, including environmental (unexpected) uncertainty.

27
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The learning rate in the HGF

Unpacking the learning rate, we see:

outcome uncertainty

/

A\ pa pa

Ty Ty Ty

- — A
2+ a, 1

+ 7T
al(k_l) +(exp (Kl,ugk_l) + w4 -

environmental
uncertainty

informational
uncertainty

28
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3-level HGF for continuous observations

Posterior expectation of X,
4 | |

gl | 1 | | 1 L
0 100 200 300 400 500 600

Posterior expectation of X,
6 , | _

4! ! | | | | !
0 100 200 300 400 500 600

Input u (green) and posterior expectation of X, (red) for ¢=0 0 0, »=1 1, ®=-13 -2 -2, ¢=0.0001
1.2 | 1 | | |

[ | | | | | |
0 100 200 300 400 500 600
Trial number 29
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3-level HGF for continuous observations

Precision weights

18 T T T T T I
—1st level

—2nd level |

—3rd level
1.4 1

1.6

I

eights

= 0.8/ :

0.4} T

| | | |

100 200 300 400 500 600
Trading days from Jan 1, 2010

30
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VAPEs and VOPEs

The updates of the belief on x; are driven by value prediction errors (VAPEs)
k) _ (k=1) , Tu g A
Uy~ = Uy + 0] , VAPE
/i
1

while the x,-updates are driven by volatility prediction errors (VOPEs)

©_ e 1 R
luZ — ‘[,[2 + E Kl vl VOPE
2

k k k—1)\2
o+ (10 - )

) -1

- (k-1 k—1
01( ) + exp (Klug ) + wl)

31
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3-level HGF for binary observations

xék) ~N (xs(,k_l),ﬁ)
xék) ~N (xgk_l), exp (Kx?()k) + a)))

xik) ~ Bern (xgk))

Mathys et al., 2011; Iglesias et al., 2013; Vossel et al., 2014a; Hauser et al., 2014; Diaconescu et
al., 2014; Vossel et al., 2014b; ...

32
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The learning rate in the HGF

= HGF mulhat
[0I0 prob struct

~~"Ir HGF 2nd

1 L 1
. ===Ir HGF 3rd
/ RWIr
— RWvhat
0.8r =
0.6 l
|
]
0.4 ~-4- -
" ’f‘—‘_- { Y
X :ilf‘ ”’ \\\ ‘
v, \\ 1 ‘
02 _\\ :\‘!‘\\‘ 'll I’y ‘f\”“"l\"’v\\;\ i \‘I\'\\\-\a\ao—\/\
A \)._____‘L’ \\ ", -.
-~ \”“-.\ 1 -~ l'
/// )
0 |
0 20 40 60 80 100 120 140 160 180
Trials
Andreea Diaconescu
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3-level HGF for continuous observations

x?(,k) ~N (xs(,k_l), v, )

xgk)~]\f (xgk_l), exp (szgk) + wz) )

xfk) ~N (xik_l), exp (legk) + wl) )

u®~v (xik), i 1)

35
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3-level HGF for continuous observations

Precision weights

18 T T T T T I
—1st level

—2nd level |

—3rd level
1.4 1

1.6

I

eights

= 0.8/ :

0.4} T

| | | |

100 200 300 400 500 600
Trading days from Jan 1, 2010
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Variable drift

xik) ~N (xgk_l) + z§k_1), exp (Kxxgk) + ‘Ux) )

37
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Jumping Gaussian estimation task

Input (green) and decision (orange) with mean and 95% interval of input (black)
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Independent mean and variance model

¢
¢

39
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Jumping Gaussian estimation task

Prediction of input (brown), input (green), posterior belief (red) Belief on noise (red), true noise (dashed black)
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. 1007 20- 1
= 80, .
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How to reveal the precision-weighting of prediction errors
when simple exponential-family likelihoods will not do

e Formulate the problem hierarchically (i.e., imitate evolution: when
it built a brain that supports a mind which is a model of its
environment, it came up with a (largely) hierarchical solution)

e Separate levels using a mean-field approximation

e Derive update equations

41
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HGF: empirical evidence (Iglesias et al., 2013)

cue prediction target Il
300 ms 800/1000/1200 ms 150/300 ms 2000 + 500 ms

. >
time

Changes in cue strength (black), and
posterior expectation of visual category (red)

1 r T T T

r

200 250 300

150
Trials

0 50 100
42
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HGF: empirical evidence (Iglesias et al., 2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
HGF3 0.0361 0 0.1404 0 0.1304 0
Sutton 0.0685 0 0.0710 0 0.0761 0
RW 0.0260 0 0.0264 0 0.0769 0

43
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HGF: empirical evidence (Iglesias et al., 2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
HGF3 0.0361 0 0.1404 0 0.1304 0
Sutton 0.0685 0 0.0710 0 0.0761 0
RW 0.0260 0 0.0264 0 0.0769 0
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HGF: empirical evidence (Iglesias et al., 2013)

first fMRI study second fMRI study conjunction across studies
x=3,y=25z=47 x=0,y=25z=47 x=0,y=25z=47

Figure 2. Whole-Brain Activations by ¢,

Activations by precision-weighted prediction error about visual stimulus outcome, &5, in the first fMRI study (A) and the second fMRI study (B). Both activation
maps are shown at a threshold of p < 0.05, FWE corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the
results of a “logical AND" conjunction, illustrating voxels that were significantly activated in both studies.

45
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HGF: empirical evidence (Iglesias et al., 2013)

Figure 3. Midbrain Activation by &,
Activation of the dopaminergic VTA/SN associ-
ated with precision-weighted prediction error

-~ -~ N ! : A :

3 about stimulus category, e,. This activation is

shown both at p < 0.05 FWE whole-brain corrected

(red) and p < 0.05 FWE corrected for the volume of

- ‘ " our anatomical mask comprising both dopami-

- . - nergic and cholinergic nuclei (yellow).
”~ (A) Results from the first fMRI study.
v (B) Second fMRI study.

.
first MR study second Mtudy conjunction = z=-18 (C) Conjunction (logical AND) across both studies.
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HGF: empirical evidence (Iglesias et al., 2013)

" T,
s
-
first fIMRI study
B
l second fMRI study

conjunction across studies

Figure 6. Basal Forebrain Activations by g5

Activation of the cholinergic basal forebrain associated with precision-
weighted prediction error about stimulus probabilities e; within the anatomi-
cally defined mask. For visualization of the activation area we overlay the
results thresholded at p < 0.05 FWE corrected for the entire anatomical mask
(red) on the results thresholded at p < 0.001 uncorrected (yellow) in the first (A:
¥=13,y=9, 2= —8)and the second fMRI study (B:x=0,y=10,z=—8). (C) The
conjunction analysis ("logical AND") across both studies (x=2,y=11,z= —8).
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HGF: empirical evidence (Diaconescu et al., in preparation)

3s 2s

Fig. 1. Experimental Paradigm: 100 male volunteers played a binary lottery task and received advice about which option to
choose from a more informed agent who was also incentivized to influence the participants’ choices. To decide whether to
take his advice into account, participants also inferred on the other’s intentions and how they changed in time.
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HGF: empirical evidence (Diaconescu et al,, in preparation)

N=100

Channels 5
100 Outcome PE 0,
peak: 136ms anterior | |
Cue-related PE &, :
anterior " } i ‘I
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posterior : ~ : : '
Sé peak:'310nis . :
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How to estimate and compare models:
the HGF Toolbox

 Available at

http://www.translationalneuromodeling.org/tapas
e Start with README, manual, and interactive demo
* Modular, extensible

« Matlab-based

50



- = .
\SE=ES)

) MAX PLANCK UCL CENTRE

Y E—— I E— for Computational Psychiatry and Ageing Research

* We have to make good predictions to avoid surprise and survive, that is
we have to use probabilistic (i.e., Bayesian) inference based on a good

model of our environment.

* Bayesian inference means updating beliefs by uncertainty- (i.e.,

precision-) weighted prediction errors.
* Precision-weighting has to take account of all forms of uncertainty.

* A breakdown in this may be the root of many psychopathological

phenomena.
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