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Imagine the following situation: 

 

You’re on a boat, you’re lost in a storm and trying to get back to shore. A 
lighthouse has just appeared on the horizon, but you can only see it when 
you’re at the peak of a wave. Your GPS etc., has all been washed overboard, 
but what you can still do to get an idea of your position is to measure the 
angle between north and the lighthouse. These are your measurements (in 
degrees): 

 

76, 73, 75, 72, 77 

 

What number are you going to base your calculation on? 

 

Right. The mean: 74.6. How do you calculate that? 
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Belief building: a shamelessly artificial example 



The usual way to calculate the mean 𝑥  of 𝑥1, 𝑥2, … , 𝑥𝑛 is to take 

 

𝑥 =
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

 

This requires you to remember all 𝑥𝑖 , which can become inefficient. Since the 
measurements arrive sequentially, we would like to update 𝑥  sequentially as 
the 𝑥𝑖  come in – without having to remember them. 

 

It turns out that this is possible. After some algebra (see next slide), we get 

 

𝑥 𝑛+1 = 𝑥 𝑛 +
1

𝑛 + 1
𝑥𝑛+1 − 𝑥 𝑛  
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Updates to the mean 



Proof of sequential update formula: 

 

𝑥 𝑛+1 =
1

𝑛 + 1
 𝑥𝑖 =

𝑥𝑛+1

𝑛 + 1

𝑛+1

𝑖=1

+
1

𝑛 + 1
 𝑥𝑖 =

𝑥𝑛+1

𝑛 + 1

𝑛

𝑖=1

+
𝑛

𝑛 + 1
 
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

=𝑥 𝑛

= 

  

      =
𝑥𝑛+1

𝑛 + 1
+

𝑛

𝑛 + 1
𝑥 𝑛 = 𝑥 𝑛 +

𝑥𝑛+1

𝑛 + 1
+

𝑛

𝑛 + 1
𝑥 𝑛 −

𝑛 + 1

𝑛 + 1
𝑥 𝑛 = 

  

      = 𝑥 𝑛 +
1

𝑛 + 1
𝑥𝑛+1 + 𝑛 − 𝑛 − 1 𝑥 𝑛 = 𝑥 𝑛 +

1

𝑛 + 1
𝑥𝑛+1 − 𝑥 𝑛  

q.e.d. 
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Updates to the mean 



The seqential updates in our example now look like this: 
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Updates to the mean 

72 73 74 75 76 77 

𝑥 1 = 76 

𝑥 2 = 76 +
1

2
73 − 76 = 74.5 

𝑥 3 = 74.5 +
1

3
75 − 74.5 = 74.6  

𝑥 4 = 74.6 +
1

4
72 − 74.6 = 74 

𝑥 5 = 74 +
1

5
77 − 74 = 74.6 



𝑥 𝑛+1 = 𝑥 𝑛 +
1

𝑛 + 1
𝑥𝑛+1 − 𝑥 𝑛  
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What are the building blocks of the updates 
we’ve just seen? 

prediction 

prediction error 

new input 

weight (learning rate) 



• More specifically, does it generalize to Bayesian inference? 

 

• «Bayesian inference» simply means inference on uncertain quantities according to the rules 
of probability theory (i.e., according to logic). 

 

• Crucially, Bayesian inference can be implemented by biological agents by minimizing the 
variational free energy of a generative model of their sensory input. 

 

• Agents who use Bayesian inference will make better predictions (provided they have a good 
model of their environment), which will give them an evolutionary advantage. 

 

• We may therefore assume that evolved biological agents use Bayesian inference, or a close 
approximation to it. 

 

• So is Bayesian inference – and with it free energy minimization – based on predictions 
that are updated using uncertainty-weighted prediction errors? 
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Is this a general pattern? 



• Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference. 

 

• Before we make the next observation, our belief about the true angle 𝜗 can be described by 
a Gaussian prior: 

 
𝑝(𝜗) ∼ 𝒩(𝜇𝜗, 𝜋𝜗

−1) 

 

• The likelihood of our observation is also Gaussian, with precision 𝜋𝜀: 

 
𝑝 𝑥 𝜗 ∼ 𝒩 𝜗, 𝜋𝜀

−1  

 

• Bayes’ rule now tells us that the posterior is Gaussian again: 

 

𝑝 𝜗 𝑥 =
𝑝 𝑥 𝜗 𝑝(𝜗)

 𝑝 𝑥 𝜗′ 𝑝 𝜗′ d𝜗′
∼ 𝒩 𝜇𝜗|𝑦, 𝜋𝜗|𝑦

−1  
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Updates in a simple Gaussian model 



• Here’s how the updates to the sufficent statistics 𝜇 and 𝜋 describing our belief look like: 

 
𝜋𝜗|𝑥 = 𝜋𝜗 + 𝜋𝜀 

 

𝜇𝜗|𝑥 = 𝜇𝜗 +
𝜋𝜀

𝜋𝜗|𝑥
(𝑥 − 𝜇𝜗) 

 

 

 

• So it’s the same story all over again: the mean is updated by an uncertainty-weighted (more 
specifically: prediction-weighted) prediction error. 

 

• The size of the update is proportional to the likelihood precision and inversely proportional 
to the posterior precision. 

 

• This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian 
updates for all exponential families of likelihood distributions with conjugate priors (i.e., to 
all formal descriptions of inference you are ever likely to need). 
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Updates in a simple Gaussian model 

prediction weight (learning rate)=
how much we′re learning here

how much we already know
 

prediction error 



• Reminder (Gaussian update): 

 

𝜇𝜗|𝑥 = 𝜇𝜗 +
𝜋𝜀

𝜋𝜗|𝑥
𝑥 − 𝜇𝜗 = 𝜇𝜗 +

𝜋𝜀

𝜋𝜗 + 𝜋𝜀
(𝑥 − 𝜇𝜗) 

 

• Reducing  by 𝜋εthe fraction of precisions that make the learning rate, we get 

 

𝜇𝜗|𝑥 = 𝜇𝜗 +
1

𝜋𝜗
𝜋𝜀

+ 1
(𝑥 − 𝜇𝜗) 

 

• This is again our equation for updating an arithmetic mean, but with 𝑛 replaced by 
𝜋𝜗

𝜋𝜀
. 

 

• This shows that Bayesian inference on the mean of a Gaussian distribution entails nothing 

more than updating the arithmetic mean of  observations with 
𝜋𝜗

𝜋𝜀
=: 𝜈 as a proxy for the 

number of prior observations, i.e. for the weight of the prior relative to the observation. 
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The analogy with simple mean updating goes further 



• Many of the most widely used probability distributions are families of exponential 
distributions. 

 

• For example, the Gaussian distribution is an exponential family of distributions (and so are the 

beta, gamma, binomial, Bernoulli, multinomial, categorical, Dirichlet, Wishart, Gaussian-gamma, log-Gaussian, multivariate 

Gaussian, Poisson, and exponential distributions, among others). This means it can be written the following 
way: 

 

𝑝 𝒙 𝝑 = ℎ 𝒙 exp 𝜼 𝝑 ∙ 𝑻 𝒙 − 𝐴(𝝑) =
1

2𝜋𝜎
exp −

𝑥 − 𝜇 2

2𝜎
 

with 

𝒙 = 𝑥,  𝝑 =  𝜇, 𝜎 T, ℎ 𝒙 =
1

2𝜋
, 𝜼 𝝑 =  

𝜇

𝜎
, −

1

2𝜎

T

,  𝑻 𝒙 = 𝑥, 𝑥2 T, 𝐴 𝝑 =
𝜇2

𝜎
+

ln 𝜎

2
 

 

 

• This allows us to look at Bayesian belief updating in a very general way for all exponential 
families of distributions. 
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Generalization to all exponential families of distributions 



• Our likelihood is an exponential family in its general form:  

 
𝑝 𝒙 𝝑 = ℎ 𝒙 exp 𝜼 𝝑 ∙ 𝑻 𝒙 − 𝐴(𝝑)  

 

• The vector 𝑻 𝒙  (a function of the observation 𝒙) is called the sufficient statistic. 

 

• For the prior, we may assume that we have made 𝜈 observations with sufficient statistic 𝝃: 

 

𝑝 𝝑 𝝃, 𝜈 = 𝑧 𝝃, 𝜈 exp 𝜈 𝜼 𝝑 ∙ 𝝃 − 𝐴(𝝑)      (where 𝑧 𝝃, 𝜈  is a normlization constant) 

 

• It then turns out that the posterior has the same form, but with an updated 𝝃 and 𝜈  
replaced with 𝜈 + 1: 

 

𝑝 𝝑 𝒙, 𝝃, 𝜈 = 𝑧 𝝃′, 𝜈 + 1 exp 𝜈 + 1 𝜼 𝝑 ∙ 𝝃′ − 𝐴(𝝑)  

 

𝝃′ = 𝝃 +
1

𝜈 + 1
𝑻 𝒙 − 𝝃  
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Generalization to all exponential families of distributions 
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Proof of the update equation 
 

𝑝 𝝑 𝒙, 𝝃, 𝜈

posterior

∝ 𝑝 𝒙 𝝑

likelihood

𝑝 𝝑 𝝃, 𝜈

prior

 

                       = ℎ 𝒙 exp 𝜼 𝝑 ∙ 𝑻 𝒙 − 𝐴(𝝑) 𝑧 𝝃, 𝜈 exp 𝜈 𝜼 𝝑 ∙ 𝝃 − 𝐴(𝝑)  

                       ∝ exp 𝜼 𝝑 ∙ 𝑻 𝒙 + 𝜈𝝃 − 𝜈 + 1 𝐴 𝝑  

                      = exp 𝜈 + 1 𝜼 𝝑 ∙
1

𝜈 + 1
𝑻 𝒙 + 𝜈𝝃 − 𝐴 𝝑  

                       = exp 𝜈 + 1 𝜼 𝝑 ∙ 𝝃 +
1

𝜈 + 1
𝑻 𝒙 + 𝜈𝝃 − 𝜈 + 1 𝝃 − 𝐴 𝝑  

                      = exp 𝜈 + 1 𝜼 𝝑 ∙ 𝝃 +
1

𝜈 + 1
𝑻 𝒙 − 𝝃

=:𝝃′

− 𝐴 𝝑  

 

⟹      𝑝 𝝑 𝒙, 𝝃, 𝜈 = 𝑧 𝝃′, 𝜈′ exp 𝜈′ 𝜼 𝝑 ∙ 𝝃′ − 𝐴 𝝑  

 

         with  𝜈′ ≔ 𝜈 + 1,  𝝃′ ≔ 𝝃 +
1

𝜈 + 1
𝑻 𝒙 − 𝝃  

       q.e.d. 



• Univariate Gaussian model with unkown mean but known precision (our example from 
the beginning): 

 
𝑻 𝑥 = 𝑥 

 

• This means updating beliefs about the mean simply requires tracking the mean of 
observations 

 

• Univariate Gaussian model with unkown mean and unkown precision: 

 
𝑻 𝑥 = 𝑥, 𝑥2 T 

 

• Updating beliefs about both mean and precision of a Gaussian requires tracking the means 
of observations and squared observations; this amounts to the first and second moments by 
which a Gaussian distribution is fully characterized. 

 

• In the multivariate Gaussian case we have 𝑻 𝒙 = 𝒙, 𝒙𝒙T T
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Some examples 



• Bernoulli model (one out of two possible outcomes, coded as 0 and 1; e.g., coin flipping): 

 
𝑻 𝑥 = 𝑥 

 

• The prior here turns out to be a beta distribution corresponding to 𝜈 pseudo-observations 
with mean 𝜉. All we need to do to get the posterior (i.e., to update our belief) is to update 
the mean as new observations come in. 

 

• Categorical model (one out of several possible outcomes, with the observed outcome 
coded as 1, the rest as 0) 

 
𝑻 𝒙 = 𝒙 

 

• The prior and posterior here are Dirichlet distributions, and again, all we need to do to 
update beliefs that have a Dirichlet form is to track the means of observed succeses (1) and 
failures (0). 
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Some examples 



• Beta model (an outcome bounded between 0 and 1): 

 
𝑻 𝑥 = ln 𝑥 , ln 1 − 𝑥 T 

 

• Gamma model (an outcome bounded below at 0): 

 
𝑻 𝑥 = ln 𝑥 , 𝑥 T 

 

• Now that we have dealt with beliefs about states that are binary (Bernoulli), categorical, 
bounded on both sides (beta), bounded on one side (gamma), and unbounded (Gaussian), 
we have covered a very large proportion of states we may have beliefs about. 

 

• All Bayesian (i.e., probabilistic, rational) updates of such beliefs take the form of 
precision-weighted prediction errors. 

16 

Some examples 



• Examples of distributions that are not exponential families: Student’s t, Cauchy 

 

• These distributions are popular because of their «fat tails». However, fat tails can 
also be achieved with appropriate hierarchies of Gaussians (cf. the hierarchical 
Gaussian filter, HGF) 

 

• A further kind of distributions that are not exponential families are found in 
mixture models.  

 

• Such models are popular because of they provide multimodal distributions. But 
again, appropriate hierarchies of distributions may save the day. 
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Limitations 
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Does inference as we’ve described it adequately 
describe the situation of actual biological agents? 

𝜆 𝑥 

Sensory input 

True 
hidden states 

Inferred 
hidden states 

Action 

𝑢 

𝑎 

World Agent 
No, the dynamics 
are missing! 



• Up to now, we’ve only looked at inference on static quantities, but 
biological agents live in a continually changing world. 

 

• In our example, the boat’s position changes and with it the angle to the 
lighthouse. 

 

• How can we take into account that old information becomes obsolete? If 
we don’t, our learning rate becomes smaller and smaller because our 
eqations were derived under the assumption that we’re accumulating 
information about a stable quantity. 
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What about dynamics? 



• Keep it constant! 

 

• So, taking the update equation for the mean of our observations as our point of 
departure... 

 

𝑥 𝑛 = 𝑥 𝑛−1 +
1

𝑛
𝑥𝑛 − 𝑥 𝑛−1 , 

 

• ... we simply replace 
1

𝑛
 with a constant 𝛼: 

 
𝜇𝑛 = 𝜇𝑛−1 + 𝛼 𝑥𝑛 − 𝜇𝑛−1 . 

 

• This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that 
led Rescorla & Wagner (1972) to their formulation]. 
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What’s the simplest way to keep the learning 
rate from going too low? 



• Partly: it implies a certain rate of forgetting because it amounts to taking 

only the 𝑛 =
1

𝛼
 last data points into account. But... 

 

• ... if the learning rate is supposed to reflect uncertainty in Bayesian 
inference, then how do we 

 

• (a) know that 𝛼 reflects the right level of uncertainty at any one time, and 

 

• (b) account for changes in uncertainty if 𝛼 is constant? 

 

• What we really need is an adaptive learning that accurately reflects 
uncertainty. 

21 

Does a constant learning rate solve our problems? 



• This requires us to think a bit more about what kinds of uncertainty we are dealing 
with. 

 

• A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour & 
Bossaerts, 2011): 

 

• (a) outcome uncertainty that remains unaccounted for by the model, called risk by 
economists (𝜋𝜀  in our Bayesian example); this uncertainty remains even when we 
know all parameters exactly, 

 

• (b) informational or expected uncertainty about the value of model parameters (𝜋𝜗|𝑥 

in the Bayesian example), 

 

• (c) environmental or unexpected uncertainty owing to changes in model parameters 
(not accounted for in our Bayesian example, hence unexpected).  
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An adaptive learning rate that accurately 
reflects uncertainty 



• Various efforts have been made to come up with an adaptive learning rate: 

– Kalman (1960) 

– Sutton (1992) 

– Nassar et al. (2010) 

– Payzan-LeNestour & Bossaerts (2011) 

– Mathys et al. (2011) 

– Wilson et al. (2013) 

 

• The Kalman filter is optimal for linear dynamical systems, but realistic data 
usually require non-linear models. 

 

• Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us 
to derive update equations that are optimal in the sense that they minimize 
surprise. 
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An adaptive learning rate that accurately 
reflects uncertainty 
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The hierarchical Gaussian filter (HGF) 

𝑝 𝑥𝑛
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑛
(𝑘)

~𝒩 𝑥𝑛
(𝑘−1)

, 𝜗  

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

, 𝑓1 𝑥2  

𝑝 𝑥1
(𝑘)

 

𝑥1
(𝑘−1)

 

𝑥2
(𝑘)

~𝒩 𝑥2
𝑘−1

, 𝑓2 𝑥3  

𝑝 𝑥2
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑓𝑖 𝑥𝑖+1  

𝑝 𝑥𝑖
(𝑘)

 

𝑥𝑖
(𝑘−1)

 



• At the outcome level (i.e., at the very bottom of the hierarchy), we have 

 

𝑢(𝑘) ~ 𝒩 𝑥1
𝑘

, 𝜋 𝑢
−1  

 

• This gives us the following update for our belief on 𝑥1 (our quantity of interest): 

 

𝜋1
(𝑘)

= 𝜋 1
(𝑘)

+ 𝜋 𝑢 

 

𝜇1
(𝑘)

= 𝜇1
(𝑘−1)

+
𝜋 𝑢

𝜋1
(𝑘)

𝑢 𝑘 − 𝜇1
(𝑘−1)

 

 

• The familiar structure again – but now with a learning rate that is responsive to 
all kinds of uncertainty, including environmental (unexpected) uncertainty. 
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The hierarchical Gaussian filter (HGF) 



Unpacking the learning rate, we see: 

 

 

 
𝜋 𝑢

𝜋1
(𝑘)

=
𝜋 𝑢

𝜋 1
(𝑘)

+ 𝜋 𝑢
=

𝜋 𝑢
1

𝜎1
(𝑘−1)

+ exp 𝜅1𝜇2
(𝑘−1)

+ 𝜔1

+ 𝜋 𝑢
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The learning rate in the HGF 

informational 
uncertainty 

environmental 
uncertainty 

outcome uncertainty 



VAPEs and VOPEs 

The updates of the belief on 𝑥1 are driven by value prediction errors (VAPEs) 
 

𝜇1
(𝑘)

= 𝜇1
(𝑘−1)

+
𝜋 𝑢

𝜋1
(𝑘)

𝑢(𝑘) − 𝜇1
(𝑘−1)

, 

 
 
while the 𝑥2-updates are driven by volatility prediction errors (VOPEs) 
 

𝜇2
(𝑘)

= 𝜇2
(𝑘−1)

+
1

2
𝜅1 𝑣1

(𝑘) 𝜋 1
(𝑘)

𝜋2
(𝑘)

𝛿1
(𝑘)

 

 

𝛿1
(𝑘)

≝
𝜎1

𝑘
+ 𝜇1

𝑘
− 𝜇1

(𝑘−1) 2

𝜎1
(𝑘−1)

+ exp 𝜅1𝜇2
(𝑘−1)

+ 𝜔1

− 1 

VAPE 

VOPE 
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3-level HGF for binary observations 

𝑥3 

 

𝑥2 

𝜗 

𝜅, 𝜔 

𝑥1 
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𝑥3
𝑘
 ~ 𝒩 𝑥3

𝑘−1
, 𝜗  

𝑥2
𝑘

 ~ 𝒩 𝑥2
𝑘−1

, exp 𝜅𝑥3
𝑘

+ 𝜔  

𝑥1
𝑘

 ~ Bern 𝑥2
𝑘

 

Mathys et al., 2011; Iglesias et al., 2013; Vossel et al., 2014a; Hauser et al., 2014; Diaconescu et 
al., 2014; Vossel et al., 2014b; ... 

VAPE 

VOPE 



Taking it all together: notation 

𝑦 

ζ 
 

≝ 

ζ 
 

𝑦(𝑘−1) 𝑦(𝑘) 𝑦(𝑘+1) 

𝑘 = 1,… , 𝑛 

ζ 
 ≝ 

ζ 
 

𝑦(𝑘) 

 

𝑘 = 1,… , 𝑛 

𝑦 

𝑥 

≝ 

𝑘 = 1,… , 𝑛 

𝑢 
𝑢(𝑘−1) 

 

𝑢(𝑘) 

 

𝑢(𝑘+1) 

 

𝑥(𝑘−1) 

 

𝑥(𝑘) 

 

𝑥(𝑘+1) 
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3-level HGF for continuous observations 

𝑢 

𝑥3 

𝑥1 

𝜗 

𝜅1, 𝜔1 

𝜋 𝑢 
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VAPE 

VOPE 

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

, exp 𝜅1𝑥2
(𝑘)

+ 𝜔1   

𝑥3
(𝑘)

~𝒩 𝑥3
𝑘−1

, 𝜗  

𝑢(𝑘)~𝒩 𝑥1
𝑘

, 𝜋 𝑢
−1  

𝑥2 𝜅2, 𝜔2 

VOPE 

𝑥2
(𝑘)

~𝒩 𝑥2
𝑘−1

, exp 𝜅2𝑥3
(𝑘)

+ 𝜔2   



3-level HGF for continuous observations 
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3-level HGF for continuous observations 
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Variable drift 

𝑢 

𝑥2 𝑧2 

𝑥1 𝑧1 

𝜗𝑥 𝜗𝑧 

𝜅𝑥 , 𝜔𝑥 𝜅𝑧, 𝜔𝑧 

𝜋 𝑢 
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VAPE 

VAPE 

VOPE VOPE 

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

+ 𝑧1
(𝑘−1)

, exp 𝜅𝑥𝑥2
(𝑘)

+ 𝜔𝑥   



Jumping Gaussian estimation task 
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Chaohui Guo 



Independent mean and variance model 

𝑢 

𝑥  𝛼  

𝑥 𝛼 

𝜗𝑥 𝜗𝛼 

𝜅𝑥 , 𝜔𝑥 𝜅𝛼 , 𝜔𝛼 

𝜅𝑢 , 𝜔𝑢 
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VAPE VAPE 

VOPE VOPE 

𝑢(𝑘) ~ 𝒩 𝑥 𝑘 ,  exp 𝜅𝑢𝛼
(𝑘) + 𝜔𝑢  



Jumping Gaussian estimation task 
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The learning rate in the HGF 

Andreea Diaconescu 
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HGF: empirical evidence (Iglesias et al., 2013) 

Model comparison: 
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HGF: empirical evidence (Iglesias et al., 2013) 
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HGF: empirical evidence (Iglesias et al., 2013) 
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HGF: empirical evidence (Iglesias et al., 2013) 
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How to estimate and compare models: 
the HGF Toolbox 

• Available at 

http://www.translationalneuromodeling.org/tapas 

• Start with README, manual, and interactive demo   

• Modular, extensible 

• Matlab-based 
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Summary 

• Bayesian inference (and free energy minimization) imply the application of a 

canonical kind of belief update: the uncertainty- (i.e., precision-) weighted 

prediction error. 

 

• Precision-weighting has to take account of all forms of uncertainty, including 

about precision (or volatility) itself. 

 

• Updates take two forms: VAPEs (value prediction error-driven) and VOPEs 

(volatility prediction error-driven) 

 

• Evidence from neuroimaging indicates that the brain processes VOPEs as well 

as VAPEs. 
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