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Abstract

Inferring on others’ (potentially time-varying) intentions is a fundamental problem during many social transactions. To
investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in
which 16 pairs of volunteers (randomly assigned to ‘‘player’’ or ‘‘adviser’’ roles) interacted. The player performed a
probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser,
who received more predictive information, issued an additional recommendation. Critically, the game was structured such
that the adviser’s incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling
framework, we found that the players’ behavior was best explained by the deployment of hierarchical learning: they inferred
upon the volatility of the advisers’ intentions in order to optimize their predictions about the validity of their advice. Beyond
learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on
their estimates of advice accuracy for making choices when they believed that the adviser’s intentions were presently stable.
Finally, our model of the players’ inference predicted the players’ interpersonal reactivity index (IRI) scores, explicit ratings of
the advisers’ helpfulness and the advisers’ self-reports on their chosen strategy. Overall, our results suggest that humans (i)
employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform
decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information.
The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral
readouts and may prove useful in future clinical studies of maladaptive social cognition.
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Introduction

The process of how we represent others’ intentions is an
important determinant of social exchange. This inferential process
becomes even more crucial when we need to rely on other people’s
advice regarding a course of action. Credibility can be inferred
from another’s reputation, which is in turn developed through
recursive social interactions [1,2]. But since advice is motivated by
unknown goals, which may also change in time, we are constantly
challenged by the question of how accurately we represent others’
intentions.

As agents’ intentions are hidden from observers, they have to be
inferred from their actions. The monitoring of other agents’
intentions represents a particular aspect of ‘‘theory of mind’’ [3–5].
Different cognitive frameworks for understanding this process have
been suggested, e.g. action understanding vs. mentalizing (attri-
bution of mental states) [6–8]. Bayesian models in particular
provide a formal account of how observers build models of other
agents and use them to predict their desires or intentions. One

important approach is to formulate social cognition in terms of a
partially observable Markov decision process (POMDP) that
describes the relations between environmental states (accessible
to the observer) and another agent’s (unobservable) mental states
[9–11]. This conceptualization, however, tends to be normative
and does not usually emphasize individual variability in social
inference. Another framework proposes that theory of mind can be
understood in terms of recursive thinking, and focuses on
identifying the depth of reasoning that leads to optimal inference
[2,12,13]. Importantly, so far both types of approaches have been
applied to situations where the other agents’ intentions are stable
over time.

In the present study we build on these previous computational
treatments of how humans infer on the intentions of others by
considering the additional challenge of detecting how quickly they
change in time, i.e. volatility. To this end, we propose novel
generative models of how humans may infer on volatile intentions
of others and apply these models to behavioral data from a new
experimental paradigm. The models we employ are conceptually
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similar to previous POMDP models, but emphasize individual
approximations to Bayes-optimality, as described below.

Specifically, we addressed the following two questions by
comparing the explanatory power of alternative computational
models that were fitted to the observed behavior: (i) Are humans
able to deploy hierarchically structured learning during social
interactions and simultaneously predict the accuracy of advice and
the stability of the adviser’s intentions? (ii) Would humans rely
more on social advice (with potentially high information but also
unknown degree of uncertainty) or on non-social information that
is potentially less accurate but had a known outcome distribution
(i.e., risk)?

To address these questions, we designed an interactive and
deception-free economic game that involved situations of both
aligned and conflicting interests between participants (all male)
who were randomly assigned to a ‘‘player’’ or an ‘‘adviser’’ role. In
this social exchange paradigm, which builds on a previous task by
Behrens et al. (2008), participants received distinct information
about the probability of two possible outcomes. The player had to
predict the outcome of a binary lottery whose true probability
distribution was displayed as a pie chart. The adviser issued an
additional recommendation (advice) to the player. The informa-
tion available to the adviser was still probabilistic, but with a larger
and constant probability (80%) as it was generated after the
outcome had been drawn (Figure 1).

Importantly, the adviser’s payment was structured such that his
incentive to provide valid or misleading advice varied during the
game and introduced temporal variations in aligned and
conflicting interests between player and adviser. This required
the player to detect changes in the adviser’s intentions and adapt
his own decision-making accordingly. It is not clear, however,
what exact mechanism underlies adaptive behavior in this
scenario: would players only track trial-wise changes in advice
accuracy, or would they invoke a more complex hierarchical
model, which also assumes that players track the volatility of the
advisers’ intentions (see [14])? Furthermore, even if the latter was
the case, would volatility estimates only serve to optimize inference

and learning, or would they directly impact on trial-by-trial
variability of decisions?

To address these questions, we considered different explana-
tions (hypotheses) for the behavior displayed by our participants,
each of which was formalized as a two-component model. The first
component of each model represented the player’s belief updating
about the causes of the advisor’s behavior; we refer to this
component as the ‘‘perceptual model’’. The second component is
the ‘‘response model’’, which maps the current belief to the
player’s actual decision (see [15,16]). We constructed a factorially-
structured set of 12 different models (model space) by systemat-
ically combining different perceptual and response models (see
Figure 2), as described in detail in the Methods section. We then
fitted these models to the trial-by-trial responses of each subject
using Bayesian model inversion and formally compared the
plausibility of all 12 models by random effects Bayesian model
selection (BMS). Altogether, this corresponds to a ‘‘meta-Bayes-
ian’’ approach [15], i.e., a Bayesian treatment of Bayesian models
of cognition, also known as a ‘‘doubly Bayesian’’ [17] or
‘‘ecumenical Bayes’’ [18] approach. This enabled us to identify
a hierarchical generative model, which may underlie social
inference in our paradigm, and whose parameter estimates
predicted independent behavioral data, such as explicit ratings
of the players, self-reports on strategy used by the advisers and
questionnaire scores.

Materials and Methods

Ethics statement
All participants gave written informed consent before the study,

which had received ethics approval by the local responsible
authorities (Kantonale Ethikkommission, KEK 2010-0312/3).

Participants
Thirty-two healthy male adult volunteers (age range: 19-30

years; median age = 22) participated in the study. Only men
participated in this study to avoid potential gender-related
confounds in the pairings of advisers and players, such as gender
differences in the perception of trustworthiness (with women being
perceived as generally more trustworthy than men [19]).

Participants with previous neurological or psychiatric history or
who were taking medication at the time were excluded from the
study. Three days before the testing session, participants received a
battery of psychological questionnaires, which they had to fill out
online. This included the Temperament and Character Inventory
(TCI-K) [20] to measure personality traits and the Interpersonal
Reactivity Index (IRI) [21] to measure empathy, perspective-
taking, and theory of mind traits.

Experimental procedure
Inspired by the paradigm of Behrens et al. (2008), we developed

a deception-free and interactive economic game for monetary
rewards. This paradigm involved pairs of volunteers (randomly
assigned to a ‘‘player’’ and ‘‘adviser’’ role) who met each other for
the first time on the day of the experiment. The player had to
perform a standard probabilistic reinforcement learning task and
was provided with truthful information about the a priori
probabilities of trial-wise outcomes by a visual pie chart. The
outcome was either green or blue, and all trials contained one of 6
cue types (blue:green pie charts: 75:25, 65:35, 55:45, 45:55, 35:65,
and 25:75) (Figure 1a). The adviser, however, received more
accurate information: once the outcome was determined (accord-
ing to the probabilities of the visual pie chart), he was informed
about the result with a constant accuracy of 80%. Based on this

Author Summary

The ability to decode another person’s intentions is a
critical component of social interactions. This is particularly
important when we have to make decisions based on
someone else’s advice. Our research proposes that this
complex cognitive skill (social learning) can be translated
into a mathematical model, which prescribes a mechanism
for mentally simulating another person’s intentions. This
study demonstrates that this process can be parsimoni-
ously described as the deployment of hierarchical learning.
In other words, participants learn about two quantities: the
intentions of the person they interact with and the veracity
of the recommendations they offer. As participants
become more and more confident about their represen-
tation of the other’s intentions, they make decisions more
in accordance with the advice they receive. Importantly,
our modeling framework captures individual differences in
the social learning process: The estimated ‘‘learning
fingerprint’’ can predict other aspects of participants’
behavior, such as their perspective-taking abilities and
their explicit ratings of the adviser’s level of trustworthi-
ness. The present modeling approach can be further
applied in the context of psychiatry to identify maladap-
tive learning processes in disorders where social learning
processes are particularly impaired, such as schizophrenia.
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information, the adviser issued a recommendation to the player on
which option to choose. To signal his suggestion, the adviser held
up a blue or a green card (Figure 1b); these recommendations
were recorded, using a video camera, for use as stimuli in future
experiments. Throughout the experiment, both the player and the
adviser sat across from each other and were not allowed to interact

in any other way than the adviser holding up a card to indicate his
suggestion.

Notably, as detailed below, the adviser’s pay-off was structured
such that his motivation to provide valid or misleading information
varied across the game. The player therefore needed to learn
about the time-varying intentions of the adviser in order to decide

Figure 1. Experimental paradigm. Sixteen pairs of healthy male volunteers randomly assigned to the ‘‘adviser’’ role (A) or the ‘‘player’’ role (B)
interacted in an economic game. The player had to predict the outcome of a binary lottery for which the odds were shown as a pie chart (cue). The
player saw a progress bar, which increased with every correct prediction (and decreased with every incorrect/missed prediction). If the player reached
the silver range, he received an extra bonus of CHF 10 (Swiss Francs); if he reached gold, he received an extra CHF 20. The adviser, however, received
more information about the outcome (constant probability of 80%), and based on this information, advised the player on which option to choose.
Critically, the adviser’s motivation to provide valid or misleading information varied across the game. In addition to the player’s progress bar, the
adviser was shown his own gold and silver ranges (which the player did not see). If the player’s score landed within the adviser’s silver range at the
end of the game, the adviser received an extra CHF 10; if the player’s score landed in the adviser’s golden range, the adviser earned an extra CHF 20.
Importantly, before the experiment the player was informed (truthfully) that the adviser had his own undisclosed incentives and that his intentions
might change during the game.
doi:10.1371/journal.pcbi.1003810.g001

Figure 2. Hierarchical structure of the model space: Perceptual models, response models, specific models. The models considered in
this study have a 36262 factorial structure and can be displayed as a tree. The leaves at the bottom represent individual models of social learning in
which both social and non-social sources of information are considered. The nodes at the first level represent the perceptual model families (three-
level HGF, reduced two-level HGF, and RW). Two response models were formalized under the HGF model: decision noise in the mapping of beliefs to
decisions either (1) depended dynamically on the estimated volatility of the adviser’s intentions (‘‘Volatility’’ model) or (2) was a fixed entity over trials
(‘‘Decision noise’’ model). At the third level, the response model parameters can be divided further according to the weight of social versus non-social
information – these models propose that participants’ beliefs are based on (1) both cue and advice information and (2) advice only. The branch on
the left-hand side proposes a model in which only the given cue probabilities (i.e., the pie chart) enter the response model (Cue Probability).
doi:10.1371/journal.pcbi.1003810.g002
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whether to trust him or not on any given trial. In addition to
computational modeling of trial-wise choices, we obtained an
explicit readout of the player’s estimates by requiring him, on 8
out of the total of 200 trials, to characterize the advisers’ intentions
as ‘‘helpful’’, ‘‘misleading’’, or ‘‘uninformative’’. The timing of
these questions and the order of the options was randomized, but
they were presented at the same times across subjects.

The player’s final payment was proportional to his total score,
plus a potential bonus if his score ended in a predefined silver or
gold range (see Figure 1). He could track the accuracy of his
predictions by monitoring a progress bar at the bottom of the
screen, which increased with every correct prediction and
decreased with every missed or incorrect response by 1 point.
By reaching the silver or the gold target, he could win CHF 10 or
CHF 20, respectively (Figure 1 and Table 1). The player was
informed before the experiment that the adviser had incentives
that were not necessarily aligned with his own and could vary
throughout the experiment.

The adviser was able to monitor the player’s progress, and was
simultaneously shown his own opportunities to gain monetary
rewards (i.e., gold and silver ranges, which were unknown to the
player). Critically, the targets of the player and the adviser were
arranged to create situations of shared and conflicting interests: the
gold range of the adviser preceded the silver target of the player,
and the silver range of the adviser also ended before the onset of
the gold target of the player (see Figure 1 and Table 1).

A typical interaction between the two participants during this
game unfolded in the following manner (compare Figure 1): the
adviser initially had an incentive to assist the player until the latter
reached the adviser’s gold range. Once the players’ score was
within the adviser’s gold range, the advisers’ incentive to provide
misleading advice increased. Once the player recognized this
hidden change in intention and either ignored the advice or
decided to bet on the opposite color, the player’s progress bar was
likely to exceed the adviser’s gold range. Consequently, if the
adviser was unable to confine the player to his (the adviser’s) gold
range, the next-best strategy for the adviser was to help the player
with correct advice again and aim to push him into his (the
adviser’s) silver range. Once the player reached the adviser’s silver
range, the adviser had an additional incentive to mislead the
player again to prevent the player from moving out of his (the
adviser’s) silver range.

To distinguish general inference processes under volatility from
inference specific to intentionality, each pair of participants also
performed a control task. To exclude temporal order effects, the
sequence of the two tasks was counterbalanced across participants.
In the control task, the adviser was blindfolded and issued his
recommendation by picking a card from 6 separate decks placed
before him by the experimenter. The blindfolding removed any
intentionality by preventing that the adviser could influence what
advice he was giving the player; furthermore, the adviser was
unable to witness trial outcomes. The predictive accuracy of the six
decks of cards was either 80% or 20%. The players were informed

in advance that the card decks varied in their predictive accuracy,
but not what the probabilities were nor that they were constant per
each deck. However, the players could observe from which deck
the card was sampled. This control condition thus closely
corresponded to the main task, except for the role of intentionality:
the player was required to track advice accuracy under volatility
(induced by the adviser blindly switching between decks with
different accuracy) and had to make trial-wise decisions how to
combine the veridical information from the visual pie chart with
the more informative (but volatile) advice.

Both tasks included 192 trials (plus the 8 rating trials) with an
equal number of 6 cue target types (75:25, 65:35, 55:45, 45:55,
35:65, and 25:75 blue: green pie charts). The trial outcome was
randomly drawn from these probability distributions. At the end of
the study, all participants were debriefed and asked to describe the
strategy that they employed during the game.

Computational modeling
In the present study, we examined how subjects updated their

beliefs about others’ intentions and chose to follow or disregard
their advice. For this purpose, we applied two cognitive models
(which we here refer to as ‘‘perceptual models’’): (i) the
Hierarchical Gaussian Filter (HGF), a generic Bayesian model of
learning under perceptual uncertainty and environmental volatil-
ity [22], and (ii) the Rescorla-Wagner (RW) model [23], a
commonly used reinforcement learning model. In order to verify
whether players really deploy hierarchical learning and infer on
the volatility of the adviser’s intentions, we also included a reduced
(non-hierarchical) version of the HGF as control; this alternative
model contained only two levels of learning (see Table 2).

Furthermore, in order to link trial-by-trial beliefs to the
observed decisions (and thus enable model inversion), we
considered several alternative response models, which differed
with regard to whether participants incorporated social and/or
non-social sources of information. Together, this resulted in a
factorial model space (see Figure 2), which is described in more
detail below.

Perceptual models
Hierarchical Gaussian Filter (HGF). The HGF is a generic

hierarchical model of learning, which allows for inference on an
agent’s beliefs about the state of the world from his/her observed
behavior (see [22] for theoretical background and [24] and [25]
for recent applications). This model is related to the ‘‘Bayesian
brain’’ hypothesis [26–30], which postulates that evolutionary
selection should have resulted in neural and cognitive processing
principles that approximate a statistical optimum. This implies
that the brain maintains and continually updates a generative
(predictive) model of its sensory inputs, which allows for inference
on hidden environmental states that are hierarchically organized
and cause the sensory inputs that the agent experiences. In the
HGF, these states evolve in time as hierarchically coupled

Table 1. Player and adviser incentives.

Player Silver Target Gold Target

.65 points .115 points

Adviser Gold Range Silver Range

35–50 95–110

doi:10.1371/journal.pcbi.1003810.t001
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Gaussian random walks where, at any given level, the variance
(step size) is controlled by the level above (see [22] for details).

In brief, the HGF proposes that an agent uses a sequence of
sensory inputs to make inferences on a hierarchy of hidden states

x
kð Þ

1 ,x
kð Þ

2 , . . . ,x
kð Þ

n of its environment (where k is a trial index and n
is the number of levels in the hierarchy); see Figure 3. In the
context of our paradigm, the player has to infer on the congruence
between the advice and the outcome. Thus, the hidden state x1

denotes the accuracy of the advice, which is binary, i.e., any single

piece of advice is either accurate (x
kð Þ

1 ~1) or inaccurate (x
kð Þ

1 ~0).
Beliefs about advice accuracy and advisers’ intentionality are

represented as time-varying states in the model, where all states
higher than x1 are continuous and evolve as Gaussian random
walks, which are hierarchically coupled to each other in the
following manner: The lowest state, x1 represents the participant’s
belief about advice accuracy, i.e., the probability that the advice is
accurate (Eq. (1)), and depends on the next higher (unbounded)
state x2 via the logistic sigmoid transformation s :ð Þ in Eq. (2).

p x1Dx2ð Þ~s x2ð Þx1 1{s x2ð Þð Þ1{x1~Bernoulli x1; s x2ð Þð Þ ð1Þ

where

s xð Þ~def 1

1z exp {xð Þ : ð2Þ

At the next higher level, x2 denotes the belief about the adviser’s
tendency to deliver accurate advice (i.e., the adviser’s current
degree of helpfulness). The variance or the step size with which x2

evolves over time depends on the level above, the highest state x3.

p x
kð Þ

2 Dx k{1ð Þ
2 ,x

kð Þ
3 ,k,v

! "
~N x

kð Þ
2 ; x

k{1ð Þ
2 , exp kx

kð Þ
3 zv

! "! "
ð3Þ

Table 2. Prior mean and variance of the perceptual and response model parameters.

Parameter Prior mean Prior variance

(i) HGF model class M1 . . . M6

k 0.5 1

v 22 100

q 0.5 1

m
k~0ð Þ

2
0 1

s
k~0ð Þ

2
1 1

m
k~0ð Þ

3
1 1

s
k~0ð Þ

3
1 1

(ii) No Volatility HGF model classM7 . . . M9

k 0.5 0

v 22 100

q 0.5 0

m k~0ð Þ
2

0 1

s
k~0ð Þ

2
1 1

m
k~0ð Þ

3
1 0

s
k~0ð Þ

3
1 0

(iii) Rescorla-Wagner model classM10 . . . M12

a 0.2 1

v k~0ð Þ 0.5 1

(iv) Integrated model classM1,M4,M7,M10

f 0 1

b 48 1

(v) Reduced: Advice M2,M5,M8,M11

f ? 0

b 48 1

(vi) Reduced: Cue model class M3,M6,M9,M12

f {? 0

b 48 1

Note: The prior variances are given in the space in which parameters are estimated. k, q, a,m k~0ð Þ
2 ,m

k~0ð Þ
3 ,v k~0ð Þ and f are estimated in logit-space, while s2, s3 and b are

estimated in log-space.
doi:10.1371/journal.pcbi.1003810.t002
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The highest state x3 represents the (log) volatility of the adviser’s
intentions (i.e., tendency to offer accurate advice).

p x
kð Þ

3 Dx k{1ð Þ
3 ,q

! "
~N x

kð Þ
3 ; x

k{1ð Þ
3 ,q

! "
ð4Þ

The temporal evolution of these states and their influence on
each other is captured by three parameters, which can differ across
agents to allow for individual belief-updating styles: (i) k
determines the degree to which the second level x2 is coupled to
the third level x3, (ii) v represents the constant (tonic) component
of the log-volatility at the second level, which is independent of the
variable (phasic) component x3, and (iii) q determines how quickly
x3 evolves over time (i.e., the step size of the Gaussian random
walk performed by x3). This results in the following generative
model (for a graphical model of our implementation of the HGF,
see Figure 3):

p x
kð Þ

1 ,x
kð Þ

2 ,x
kð Þ

3 ,x
k{1ð Þ

2 ,x
k{1ð Þ

3 Dk,v,q
! "

~

p x
kð Þ

1 Dx kð Þ
2

! "
p(x

kð Þ
2 Dx k{1ð Þ

2 ,x
kð Þ

3 ,k,v)p(x3Dx
k{1ð Þ

3 ,q)p x
k{1ð Þ

2 ,x
k{1ð Þ

3

! "ð5Þ

We assume that observers update their beliefs on these
hierarchically-coupled states in a trial-by-trial fashion by applying
an efficient approximation to ideal Bayesian inference. Under a
generic mean-field approximation, such update rules have a simple
and interpretable form: at each level of the hierarchy i, updates of
beliefs (posterior means) mi are proportional to the prediction error
(d) from the level below, weighted by a precision ratio:

Dm kð Þ
i !

p̂p kð Þ
i{k

p kð Þ
i

d kð Þ
i{1 ð6Þ

where p̂p
kð Þ

i{k and p
kð Þ

i are precisions of the prediction about input

from the level below and of the belief at the current level,
respectively. (A note on notation: the superscript ‘ denotes the

‘‘prediction’’. Hence, m̂m(k)
1 refers to the prediction on trial k before

experiencing the trial outcome, and p̂p (k)
i is the precision of this

prediction.)
Rescorla-Wagner (RW) model. Reinforcement learning

models propose that agents learn to take actions that maximize
the probability of future rewards; therefore, agents learn the
‘‘value’’ of different stimuli and actions [31]. One of the most
widely used reinforcement learning model is the RW model [23]
where predictions about value are updated in proportion to a
prediction error weighted by a learning rate. The RW model does
not employ a hierarchy of hidden states, but a single state v (which,
in our case, describes the subject’s estimated value of the advice)
and one free parameter, the individual learning rate a, which is
constant across trials:

Dv kð Þ!ad kð Þ ð7Þ

Structural interpretation of the HGF update equations:
Analogy to the RW model. The hierarchical Bayesian model
that we used to fit the data might seem complicated at first glance,
but it can be reduced (via a variational approximation) to
analytical update equations that have an easily interpretable form

and contain only a few parameters (see [22] for details). As
mentioned above, the form of these update equations is similar to
those of RW learning, providing a Bayesian perspective on
reinforcement learning theory [32]. Under our scheme, the
general structure of these belief updates can be summarized as:

predictionk~predictionk{1zlearning rate|prediction errorkð8Þ

This structure is reflected by Eq. 6.
A key difference to the RW model is that the HGF uses a dynamic

learning rate that is represented as a ratio of precision estimates,
where at any hierarchical level i, the numerator represents the
(likelihood) precision of the prediction at the level below p̂pi{1, while
the denominator contains the precision of the current belief, pi.
What follows from this expression is that prediction errors are given
a larger weight (and thus belief updates are more pronounced) when
the precision of the data (input from the lower level) is high or when
the precision of the prior belief is low. This can be seen as an
analogue to Kalman filtering, in the sense that the precision
weighting of prediction errors corresponds to the Kalman gain.

Learning rates. Unlike in the RW model, the learning rate
modeled in the HGF is dynamic and fluctuates trial-by-trial as a
result of changes in both informational uncertainty and the
volatility of the adviser’s intentions. Due to the hierarchical model
structure, we must consider two learning rates: the first learning
rate varies as a function of perceptual and informational
uncertainty and is proportional to the precision (see Eq. (9)).

l
kð Þ

1 ~
1

p kð Þ
2

q m̂m kð Þ
1

! "
ð9Þ

where

q m̂m kð Þ
1

! "
~s m kð Þ

2

! "
1{s m kð Þ

2

! "! "
ð10Þ

Although x1 does not depend on its previous state in time but
results from a sigmoid transform of x2 (see Eq. (2) and Figure 3),
Eq. (9) transforms the learning rate at the second level into a
learning rate at the first level (for more details, see Eq. D.1 in the
Supplementary Material to [25]).

Furthermore, there is also a learning rate at the third level,
which has a more complicated form that depends on the estimated
mean m3 of the volatility x3 of the adviser’s intentions and on the
precision at the third level (for more details, see [22]):

l
kð Þ

3 ~
k

2

1

p kð Þ
3

e
km

k{1ð Þ
3

zv

s k{1ð Þ
2 ze

km
k{1ð Þ

3
zv

ð11Þ

where s k{1ð Þ
2 ~

1

p k{1ð Þ
2

.

Response models
The response model describes how the agent’s beliefs (the result

of perceptual inference) map onto choices (actions). In our task,
subjects can integrate social and non-social information, or use
either source of information exclusively. Specifically, the pie chart
indicates the true a priori probability ~cc about the outcome as non-
social information that is directly accessible to the player without
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need for inference. By contrast, the (uncertain) social information
corresponds to the player’s belief that the adviser gives correct

advice on the current trial. In the HGF, this belief m̂m kð Þ
1

corresponds to the logistic sigmoid transform of the predicted

tendency m
k{1ð Þ

2 (the posterior from the previous trial) of the

adviser to give correct advice (see Eq. (12)):

m̂m kð Þ
1 ~s m k{1ð Þ

2

! "
ð12Þ

The response model describes how the player bases his decision
on a weighted average of the two sources of information. Taking

Figure 3. Graphical model of the HGF and the response model. In the graphical model, the diamonds represent quantities that change in
time (i.e., that carry a time (or trial index k) but that do not depend on their previous state. The hexagons, however, represent states that change in
time but additionally depend on their previous state in time in a Markovian fashion. Circles, on the other hand, denote fixed parameters. x1

represents the accuracy of the current piece of advice, x2 the adviser’s current tendency to give accurate advice and x3 the current volatility of the
adviser’s intentions. Parameter k determines how strongly x2 and x3 are coupled, v represents the tonic component of the log-volatility in x2 and q
denotes the meta-volatility in x3. The response model has 2 layers: (1) the computation of the integrated belief or p(outcome|cued probability,
advice), i.e., the probability of the outcome given both the non-social cue and the advice; (2) the chosen action, drawn from the integrated belief
using a sigmoid decision rule. Parameter f determines the weight of the advice compared to the non-social cue. y represents the subject’s binary
response (y~1: deciding to accept the advice, y~0: going against the advice).
doi:10.1371/journal.pcbi.1003810.g003
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f[ 0,1½ $ as the weight of the social information, we obtain the
integrated belief that the advice is accurate:

b kð Þ~fm̂m kð Þ
1 z 1{fð Þ~cc kð Þ ð13Þ

For the RW model, m̂m kð Þ
1 is replaced by v k{1ð Þ.

The probability of the player following the advice (i.e., making
decision y~1 as opposed to y~0 for going against the advice) is
then described by a sigmoid function, which maps the unit interval
0,1½ $ onto itself for a given decision noise parameter b§0 (note

that this function differs from the logistic sigmoid above which
maps the whole real line onto the unit interval).

p y~1Dbð Þ~ bb

bbz 1{bð Þb
ð14Þ

In systematic model comparisons, we compared variations in
Eqs. (13) and (14), examining whether (i) subjects were more likely
to integrate social and non-social information or used either source
of information exclusively, and whether (ii) the decision noise in
the mapping from beliefs to decisions (i.e., b in Eq. (14)) was fixed
or varied in time as a function of the estimated adviser’s volatility.
These variations are detailed in the section on ‘‘Model space’’
below.

Model inversion
Priors of the model parameters, namely f for all models as well

as x~ k,v,qf g for the HGF and a for the RW model are listed in
Table 2. We defined the priors based on the experimental design
and pilot data. For parameters that were strictly bounded between
0 and 1, we chose the prior mean to be 0.5. For real-valued
parameters, we chose prior means that represented values under
which an ideal Bayesian agent would experience the least surprise
about its sensory inputs (see the functions tapas_fitModel.m and
tapas_bayes_optimal_binary_config.m in the HGF toolbox). The
priors were chosen to be relatively uninformative (with large
variances) to allow for substantial individual differences in learning
and advice weighting.

In the HGF models, we also estimated participants’ initial
beliefs about the advice accuracy and the adviser’s volatility, as
well as their uncertainty about these two quantities. Parameters
and states are estimated in spaces where they are unbounded. For
example, parameters confined to the [0,1] interval are log-
transformed and thus also estimated in an unbounded space.
Given the priors over parameters and the input sequence,
maximum-a-posteriori (MAP) estimates of model parameters
were calculated using the HGF toolbox version 2.1. The code
used is freely available as part of the open source software
package TAPAS at http://www.translationalneuromodeling.org/
tapas.

Optimization was performed using a quasi-Newton optimiza-
tion algorithm [33–36]. The objective function for maximization
was the log-joint posterior density over all perceptual and
observation parameters, given the data and the generative model.
To exclude the possibility that our Gauss-Newton gradient descent
optimization could have been influenced by local minima of the
log-joint objective function, we used two additional global
optimization methods, a Gaussian Process optimization algorithm
(GPO) [37] and a Markov chain Monte Carlo [38] sampling
scheme.

Model space
Overall, our model space was structured hierarchically, as

shown in Figure 2. We combined three alternative perceptual
models with four potential response models, constituting a total of
12 models, M1 . . . M12, which are described in more detail below.

Although the assumptions of hierarchically coupled-learning
were well founded, we also considered that participants’ decisions
could be explained by simpler non-hierarchical models. To
examine this hypothesis, we included two model classes, which
were both non-hierarchical. The first was a simplified version of
the HGF (M7 . . . M9), in which the volatility at the third level was
fixed to its prior mean and did not evolve over time (see Table 2
for the prior values used). This model assumed that participants
ignored the instructions that the advisers’ intentions might change
in time, expecting negligible changes in log-volatility at the third
level. The second model class was the classical RW model
(M10 . . . M12), which assumed a fixed learning rate.

Concerning the response models, the key question was whether
participants integrated social and non-social sources of informa-
tion or relied exclusively on one of the two sources of information.
Herein, we included two (reduced) response models, which
proposed that participants considered either the advice alone or
the cue alone when predicting the outcome. The first model was
defined by setting f to 1 (see Eq. (15) and Table 2), whereas the
second only included the displayed winning probabilities with f
fixed to 0 (see Eq. (16) and Table 2).

b kð Þ~m̂m kð Þ
1 ð15Þ

b kð Þ~~cc kð Þ ð16Þ

Notice that the latter response model is not coupled to any of
the perceptual models, because it suggests that participants do not
learn about the validity of the advice and intentions of the adviser:
on the contrary, they base their decisions only on the displayed
winning probabilities.

Furthermore, we assessed two potential mechanisms of belief-to-
response mapping (see Eq. 14), by including models which either
assumed that (i) participants responded in accordance to their
belief about advice accuracy but tainted by decision noise
(‘‘Decision noise’’ model family for models M4:::M12), or that (ii)
participants’ decisions were based on their estimates of the
volatility of the adviser’s intentions (‘‘Volatility’’ model family for
models M1,M2,M3).

The ‘‘Decision noise’’ model refers to parameter b in Eq. (14),
which represents the inverse of the decision temperature: as
b??, the sigmoid function becomes steeper, approaching a step
function (no decision noise) at b~0:5. By contrast, the ‘‘Volatility’’
model family contains a time varying mapping of beliefs onto
decisions. In this model set, the decision temperature parameter b

varies with the estimate of adviser volatility or e{m
kð Þ

3 . Hence, as the
estimated volatility of the adviser’s intentions decreases, the
sigmoid function becomes steeper. This predicts that on trials
when the player infers that the adviser’s intentions are stable, he
responds in accordance to his beliefs. As the volatility increases,
the player becomes more uncertain of the adviser’s intentions, and
thus behaves in a more exploratory manner, resulting in a noisier
mapping of belief-to-response probabilities. It is important to note
that the mapping of beliefs onto actions is updated trial-wise,
unlike in the case of the ‘‘Decision noise’’ response models, in
which the link from beliefs to decisions is determined by a fixed,
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subject-specific parameter b. Please see the video S1 for a
demonstration of how the states of the perceptual model map onto
decisions using equations (13) and (14), given all possible ranges of
response model parameter f.

Thanks to our factorial model space, we used family-level
inference [39] to (i) determine the most likely class of perceptual
models pooling across all response models, and (ii) the most likely
response model class pooling across all perceptual models.

Bayesian model selection and family inference
Before inferring on the model parameters, we evaluated the

model space using Bayesian model selection (BMS). This
procedure rests on computing an approximation to the model
evidence or p yDmð Þ the probability of the data y given a model m
[40]. The model evidence is the integral of the log-joint over the
entire parameter space, which cannot be evaluated analytically.
However, one can approximate the log model evidence with a
lower-bound, the so-called (negative) free energy F .

Alternative models can then be compared via the ratio of their
respective evidences, i.e. their Bayes factor or equivalently, the
difference in their log-evidences. At the group level, a group Bayes
factor (GBF) can be computed by multiplying Bayes factors across
subjects. The disadvantage of this procedure, however, is that it
rests on the fixed-effects assumption that all participants’ data are
generated by the same model and variation is simply due to
measurement noise [41]. This is not appropriate for our paradigm,
as it emphasizes individual differences in social learning (e.g., by
letting advisers choose their own strategy). This requires a
random-effects BMS approach, where the model becomes a
random variable in the population.

The random-effects BMS approach we use here rests on a
hierarchical scheme introduced by Stephan et al. (2009), which
estimates the parameters ak of a Dirichlet distribution of the
probabilities rk of all models considered; in turn, these
probabilities inform a multinomial distribution over model space.
This makes it straightforward to compute the posterior proba-
bility that a given model generated the data for any randomly
selected participant, relative to all other models considered (for
details see [41]). Similarly, one can compute the ‘‘exceedance
probability’’ that a particular model is more likely than any other
model in the comparison set. In other words, the exceedance
probability represents the amount of evidence that, in the
population studied, a given model is more frequent than the
others.

In case no model really stands out as a ‘‘winner’’ (i.e., no high
exceedance probability), we can partition the model space, pool
evidence over subsets of models that share a common feature (e.g.,
with and without a hierarchical level) and thus compare model
subspaces or families, instead of single models (see [39] for details).
This idea is essentially similar to factorial experimental designs in
psychology where data from all cells are used to assess the strength
of main effects and interactions. It amounts to specifying a
partition F , which splits the entire model set into k~1:::K subsets
(model families). The subset f k contains all models belonging to
family k where there are Nk models in the kth subset. Due to the
agglomerative property of the Dirichlet distribution, for any
partition of model space into families, it is straightforward to define
a new Dirichlet density reflecting this split (see Eq. 18 in [41]). The
family probabilities are then given by:

sk~
X

m[fk

rm ð17Þ

where sk is the probability of each family occurring in the
population. Exceedance probabilities wk can then be computed for
each family, in the same way as for single models. They
correspond to the probability that family k is more frequent than
any other family (of all K families considered), given the data Y
from all subjects:

wk~p(skwsj DY ,Vj=k) ð18Þ

Because the conditional model probabilities rk sum to one over
all models considered, this equation becomes particularly intuitive
when model space is split into 2 families:

w1~p(s1ws2DY )~p(s1w0:5DY ) ð19Þ

Simulations
To test the performance of BMS for our particular case, we

generated 20 datasets for each of the 4 perceptual models
considered under realistic levels of decision noise and using the
prior means as parameter values. Thus, we augmented the
softmax function in Eq. (14), which describes the mapping of
beliefs onto actions, with a noise parameter g~0:5:

p y~1Dbð Þ~ bexp log bð Þ{gð Þ

bexp log bð Þ{gð Þz 1{bð Þexp log bð Þ{gð Þ ð20Þ

We then performed model inversion using the quasi-Newton
optimization algorithm (in the same way as for the other models in
this paper) and summarized the performance of BMS in terms of a
confusion matrix (Figure S1). This matrix depicts the frequency of
‘‘correct cases’’ (where the model which generated the data has the
highest exceedance probability of all models tested); here, rows
denote the model that generated the data, and columns the model
that was inverted. Thus, off-diagonal matrix elements indicate the
frequency with which one generative model is ‘‘confused’’ with
another.

Results

Examining the robustness of model inversion and
comparison

As described in the Methods section, we examined the
robustness of our BMS results in two ways. First, we used three
different optimization schemes for inverting subject-wise models
(quasi-Newton, MCMC, Gaussian process optimization). As
shown by Table 3 (which lists the posterior probability of all 12
models under each optimization scheme), BMS results were
consistent across all schemes. Second, the simulation results
suggest that in the large majority of cases, the perceptual models
that generated synthetic data could be recovered by model
selection (Figure S1).

Do subjects exploit volatility estimates of the advisers’
intentions to dynamically update estimates of advice
accuracy?

When comparing all 12 models against each other, random
effects BMS showed that the three-level HGF augmented by the
‘‘Volatility’’ response model (M1) performed significantly better
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than the rest of the models in the majority of participants
(exceedance probability w = 0.99; Table 4 and S2–S3). Across the
perceptual model family, the three-level HGF family (M1 . . . M6)
outperformed non-hierarchical models (M7 . . . M12) including the
reduced HGF and RW models (w = 0.99; Table 5; Figure 4a).
Taken together, these findings indicate that participants infer on
two quantities, the advice accuracy and the volatility of the
adviser’s intentions, and incorporate the time-varying volatility
estimates of the advisers’ intentions into their learning about the
advice.

The HGF quantifies subject-specific learning rates at distinct
temporal scales. As an example, Figure 5 contains the learning
rates for one individual subject. Here, the learning rate at the
second level (transformed according to Eq. 9) increases as the
reliability of the advice unexpectedly changes (blue line in
Figure 5). The learning rate at the third level (green line; see Eq.
11), however, fluctuates more slowly, and increases when the
adviser’s intentions change from being consistently helpful to
being misleading. This illustrates that the learning rate adapts to
fluctuations in trial-by-trial advice reliability as well as to slower
fluctuations in adviser intentionality. By contrast, the RW model
assumes a constant learning rate a over trials. Figure 5 contrasts
this estimate of a with the trial-wise learning rates provided by the
HGF. This comparison suggests that, in a volatile environment,
such a constant learning rate is necessarily too high on many
trials.

Do subjects integrate social and non-social sources of
information, or use one source of information
exclusively?

The family of response models proposing that participants
integrate both social and non-social sources of information (i.e.,
M1,M4,M7,M10) best explained participants’ choices (w = 0.99;
see Figure 4b and Table 6). That is, to predict the winning color,
most participants relied on both the uncertain advice and the
known outcome probabilities indicated by the visual pie chart.
However, the posterior parameter estimate of f was, on average,
significantly smaller than 0.5 (pv0:05; see Table 7), suggesting
that participants weighted the visual pie chart information more
than the advice.

What drives trial-by-trial variability of decisions –
Estimates of volatility or general decision noise?

As explained above, we considered two possibilities vis-à-vis
how the player’s beliefs might determine his actions trial-by-trial.
A standard approach is to use a sigmoidal function (softmax or
exponentiated Luce choice rule; see Eq. 14), which conveys
decision noise whose amount is fixed across trials. This approach is
used in our ‘‘Decision noise’’ response models with a fixed, subject-
specific parameter b. Alternatively, however, decision noise might
vary dynamically across trials as a function of higher-order beliefs,
such as the player’s estimates of the adviser’s volatility. This is
represented in our ‘‘Volatility’’ response model family, which
postulates that when the player estimates the adviser’s intentions to
be stable, he responds in close accordance to his beliefs. On the
other hand, when the player’s estimates of the adviser’s volatility
increase, he behaves in a more exploratory manner, resulting in a
less deterministic (noisier) link between beliefs and responses. Our
model comparisons indicated that the second perspective provided
a better account of the data: the ‘‘Volatility’’ response model
family clearly outperformed the ‘‘Decision noise’’ model family
(p rDyð Þ~0:94; w = 0.99; Figure 4c).

Do the model parameter estimates predict other aspects
of behavior?

We used both classical multiple regression and variational
regression to examine whether model parameter estimates of the
winning model (M1) predicted scores of relevant psychological
traits, as measured by questionnaires, which the subjects complet-
ed three days prior to the experimental session. Model parameter
estimates k and v predicted players’ scores on the IRI (R2 = 50%,
F = 6.03, pv0:02; log Bayes Factor (full versus null mod-
el) = 15.16; Table 8). Thus, participants with a stronger tendency
to take into account the perspective of others during social
interactions showed (i) stronger coupling between inference on
advice accuracy and adviser volatility and (ii) more stable belief
updates about advice reliability (and adviser trustworthiness)
(Figure 6a). Notably, this link between parameter estimates and
independent questionnaire scores for model M1 was absent for the
other models (p~0:08 for the HGF with ‘‘Decision noise’’ and
p~0:17 for the RW model).

Performance accuracy averaged at 73%65% (mean 6 standard
deviation), indicating that, on average, the players reached the
silver target and received CHF 10 bonus payment at the end of the
game. Perceptual model parameter q and response model
parameter f predicted participants’ performance accuracy
(R2 = 40%, F = 9.41,pv0:01; log Bayes Factor (full versus null
model) = 17.59). Taken together, these results reflect that partic-
ipants who perceived the adviser’s intentions to be more stable and
who weighted the social information more during decision-making
performed better in the task (Table 8; Figure 6b–c).

Does the player’s behavior change with helpfulness of
the adviser?

Advisers also reached, on average, the silver target and received
CHF 10 payment at the end of the game. Across advisers, their
recommendation was correct in 74%69.8% of all trials.

On debriefing, 4 of the 16 advisers reported a general intention
to help the players during the task; these advisors provided correct
recommendations on 85%69.2% of the trials (note that the
information available to the advisers predicted wins with 80%
accuracy). The majority of the advisers (9 out of the 16), however,
aimed to increase their final pay-off and provided correct
recommendations on only 74%61.6% of the trials. On the one
hand, the players who interacted with more helpful advisers
weighted the advice more as indexed by larger f values and
perceived the advisers’ intentions as more stable as indexed by
reduced q values (pv0:01; Figure 6c–d). On the other hand, the
players who interacted with advisers whose intentions changed
over the course of the game exhibited significantly larger k values
than the rest (Figure 6e). This suggests that there was a more
pronounced coupling between the two learning levels (advice
accuracy and adviser volatility) during interactions with advisers
whose intentions were changing.

To demonstrate the interpretability of our model parameter
estimates, we asked each player eight times at random points
during the game to explicitly rate the advisers as ‘‘helpful’’,
‘‘uninformative’’ or ‘‘misleading’’. These ratings were coded such
that ‘‘helpful’’ corresponded to a probability of accurate advice of
1, ‘‘uninformative’’ to a probability of 0.5, and ‘‘misleading’’ to a
probability of 0. To relate the participants’ ratings to the estimates
of advice reliability as inferred from the model, we used each
player’s ratings as the outcome variable in a general linear model
with the explanatory variable being the prediction about the
advice reliability (m̂m1). This proved to be highly significant (t = 5.92,
pv0:0002) in a second level random effects regression analysis (see
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Figure S4). In brief, the state estimates of our model correspond
well to the players’ overtly expressed beliefs about the adviser’s
intentions during the game. Notably, the same analysis using the
value of the advice as estimated by the RW model did not yield
significant results (p~0:43). Altogether, this corroborates our
model comparison results and provides construct validity for our
model.

Is behavior on the control task governed by different
mechanisms?

Distinct learning performance was observed in the control task
(where the adviser was blindfolded and presented his advice by
holding up a card sampled from a series of card decks, each of
which was, on average, either 80% or 20% accurate). The players
performed significantly worse in this task compared to the socially
interactive task (t (15) = 5.48, pv0:00001), with performance
accuracy averaging at 64%62.6%.

In this task, the BMS yielded different results compared to the
socially interactive task (see Table 9). More precisely, the three-
level HGF family (M1 . . . M6) still outperformed non-hierarchical
models (M7 . . . M12), such as the reduced HGF and the RW
model (w = 0.98), suggesting that participants did incorporate time-
varying estimates of volatility (resulting from the switches among
card decks) into their beliefs about the advice accuracy.
Furthermore, the integrated response model family
(M1,M4,M7,M10), which proposed that participants weigh both
social and non-social sources of information, explained partici-
pants’ responses better than reduced response models

(M2,M3,M5,M6,M8,M9,M11,M12) according to which subjects
relied on one source of information only (w = 0.99). In contrast to
the social setting, in the control task, the response model
prescribing volatility-driven mapping of beliefs to decisions did
not differ from the model that utilized a single decision noise
parameter b(w = 0.54). In other words, unlike in the social task,
decision noise might not change across trials as a function of
adviser volatility estimates.

With respect to the posterior parameter estimates (see Table 7),
there were notable differences between the two tasks: In the
control task, parameter f averaged at 0.2860.11; this was
significantly lower than in the social task (t (15) = 2.44, pv0:02),
indicating that the players weighted the social (but unintentional)
advice significantly less than in the social task. That is, although
the card decks were more informative (80% predictability of wins/
losses) than the non-social cue (55–75% predictability), the players
relied more on the binary lottery information to predict the
outcome. The difference in the performance and the response
model parameters of these two tasks suggests that participants
performed better and relied more on the adviser’s recommenda-
tions when the adviser intentionally issued the advice.

Differences in advisers’ strategies and players’ individual
learning trajectories

In each participant, the model parameters describe an
individual learning trajectory (see Figure 7). As we debriefed each
adviser explicitly about the strategy that he employed during the
task, we were able to use these debriefings to examine how model-

Table 3. BMS results across optimization schemes (posterior model probability p(r|y) of all models).

Optimization Algorithm Response Model
HGF with
Volatility

HGF with
Decision Noise

No Volatility
HGF Rescorla-Wagner

1. GN Integrated: Cue and Advice 0.78 0.0274 0.0169 0.0166

Reduced Advice 0.0419 0.0169 0.0165 0.0171

Reduced Cue 0.0167 0.0166 0.0168 0.0165

2. GPO Integrated: Cue and Advice 0.6915 0.0747 0.0408 0.0190

Reduced Advice 0.0165 0.0167 0.0279 0.0170

Reduced Cue 0.0207 0.0178 0.0399 0.0177

3. MCMC Integrated: Cue and Advice 0.8173 0.0165 0.0165 0.0167

Reduced Advice 0.0164 0.0167 0.0169 0.0163

Reduced Cue 0.0168 0.0163 0.0164 0.0172

doi:10.1371/journal.pcbi.1003810.t003

Table 4. Bayesian model selection results (social interactive condition): Posterior model probability or p rDyð Þ and the model
exceedance probability or w.

HGF with Volatility
HGF with
Decision Noise No Volatility HGF Rescorla-Wagner

Integrated p rDyð Þ 0.7800 0.0274 0.0169 0.0166

w 0.9975 0.0001 0 0

Reduced: Advice p rDyð Þ 0.0419 0.0169 0.0165 0.0171

w 0.0005 0 0 0

Reduced: Cue p rDyð Þ 0.0167 0.0166 0.0168 0.0165

w 0 0 0 0

doi:10.1371/journal.pcbi.1003810.t004
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based quantification of individual learning and inference reflected
the players’ adaptive responses to the advisers’ behavior during the
game.

Four out of the 16 advisers provided accurate advice throughout
the game with advice reliability averaging at 85%69.2%. Upon
debriefing, they reported that they aimed for the silver range from
the beginning, as they deemed it fair for both participants to reach
the silver target. The players who interacted with this subset of

advisers perceived their intentions to be stable over time and
weighted the advice more, as indexed by larger f values (see
Figure 6d). An example of such a player is given in Figure 7a
(subject SL_010), where the trajectory of estimated advice
reliability m̂m1 indicates that this player’s estimate of advice accuracy
stayed close to 90% throughout the game. For this subject, the
estimate of f was 0.54, indicating that he relied more on the advice
than the non-social cue when making his predictions.

Table 5. Family-level inference (perceptual model set): Posterior model probability or p rDyð Þ w.

HGF with Volatility HGF with Decision Noise No Volatility HGF Rescorla-Wagner

p rDyð Þ 0.7298 0.1091 0.1066 0.0545

w 0.9969 0.0024 0.0005 0.0002

doi:10.1371/journal.pcbi.1003810.t005

Figure 4. Random effects family-level Bayesian model selection. (A) Posterior model probabilities pooled across all families of perceptual
model families (i.e., HGF Volatility, HGF decision noise, No Volatility HGF and RW) indicate that the model class ‘‘HGF Volatility’’ explains participants’
responses best. (B) Posterior model probabilities pooled across all response model families (i.e., Integrated (Cue and Advice), Reduced: Advice Only,
and Reduced: Cue Only) indicate that the ‘‘Integrated’’ model family explains participants’ responses best. (C) Posterior model probabilities across
models that propose that the mapping of beliefs onto response probabilities is achieved via trial-by-trial adviser volatility estimates (Volatility models)
or decision noise (Decision Noise). The former was the winning family.
doi:10.1371/journal.pcbi.1003810.g004
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By contrast, another 3 of the 16 advisers were consistently
uninformative, exhibiting an average of only 56%66.6% advice
reliability. Indeed, when they were debriefed, they described that
in order to reach the gold range, they attempted to confuse the
player from the beginning, preventing his progress bar to increase

significantly throughout the game and maximising their own
chances to reach gold. This turned out to be a successful strategy,
as the advisers who used this strategy were the only ones who
reached the gold target. The players who interacted with this
subset of advisers showed a very distinct trajectory of learning from

Figure 5. Learning rates and the estimated advice accuracy. (A) The estimated probability of the advice accuracy is computed according to
the HGF and the RW perceptual models. In the RW model, the probability of advice accuracy is over- or under-estimated (compared to the HGF) on
trials where the volatility of the adviser’s intentions changes; this is due to the constant learning rate a. (B) The learning rates modeled in the HGF
(according to equations 9 and 11) change over time as a function of the volatility of the adviser’s intentions.
doi:10.1371/journal.pcbi.1003810.g005
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those discussed above. First, f was low in all these players
averaging at 0.19, indicating that they (rightfully) assigned little
weight to the advice and relied exclusively on the pie chart. A
representative subject is shown in Figure 7b (subject SL_005), for
whom the estimate of f was 0.12. Furthermore, a high value of
meta-volatility q indicated that this participant perceived the
adviser’s intentions as becoming more and more volatile over the
course of the interaction. Additionally, high levels of v indicated
fast updating of beliefs about advice correctness over trials and
independently of estimates of adviser volatility. Again, this is a sign
of adaptive behavior: because the adviser is consistently uninfor-
mative (random) in his advice, a high tonic learning rate for
updating estimates about advice validity in x2 is appropriate. In
other words, this scenario describes an agent who perceives the
adviser’s intentions as stochastic because the advice is uninforma-
tive. In this scenario, the participant necessarily performs poorly
because he must base his decisions almost exclusively on the non-
social cue.

The largest subset of advisers (9 out of 16) used a strategy,
which reflected the change in incentives induced by the payoff
scheme: advisers were helpful at the beginning of the game until
the players’ progress bar reached their gold range. From this
point on, advisers began to mislead the players, preventing them
from moving beyond the gold range. Once the players detected
this change in intentionality, their score began increasing again.
This elicited another switch in the advisers’ strategy, who now
resumed a helpful attitude in order to at least reach the silver
range. On average, the recommendations of these advisers were
74%61.6% accurate. Players who interacted with these advisers
exhibited a learning trajectory that reflected the advisers’
dynamic incentives (see Figure 7c). For example, for the
representative subject shown in Figure 7c (subject SL_013), m̂m1

steadily reached 0.9 after the first 80 trials, with a concomitant
decrease in estimates of the adviser’s volatility m3. Once the
adviser’s intentions changed, the player updated his beliefs
accordingly, as reflected by an increase in the learning rate in x2

and larger updates of m̂m1. In this scenario, the player’s adaptive
behavior takes into account both the volatility of the adviser’s
intentions and the accuracy of his advice. This is reflected by high
values of the estimates for k, v, and q.

Finally, to illustrate the capacity of our model-based approach
for characterizing individual differences, we show an unusual
subject in Figure 7d (subject SL_015). This player did recognize a
change in the adviser’s intentions halfway through the game but
was much slower in updating his estimates of advice accuracy and
adviser’s volatility than the subject discussed above. This is
because his prior beliefs were close to how the adviser actually
behaved for the first half of the game and because low estimates of
meta-volatility prevented a rapid response to the change in the
adviser’s intentions. In other words, this participant remained
relatively confident about his prior estimate of the adviser’s
volatility and expected to see little change over the course of the
social interaction.

Discussion

The question of how we infer on others’ intentions is a
fundamental computational problem during social transactions.
To examine this process, we extended a paradigm introduced by
[14], turning it into an interactive social decision-making game in
which each participant was assigned to a ‘‘player’’ or an ‘‘adviser’’
role. Critically, the game was designed to ensure that the adviser’s
incentives to cooperate or deceive the player varied, thus making
his intentions volatile.

While our paradigm was inspired by the previous work of
Behrens and colleagues [14,42], it introduced two important
advances. First, whereas Behrens et al. made subjects believe that
the computer-generated advice was provided by a human being,
our paradigm used real participants without any deception. This
provides ecological validity and eschews potential ethical concerns,
which makes the recorded trials from this paradigm more widely
applicable, e.g., for future patient studies. Secondly, our paradigm
allows for a wide range of interactions between agents, as both the
adviser and the player are not restricted to employ specific
strategies during their interaction. The player can rely on the
binary lottery information (the non-social cue), the advice, or both
when selecting his choices. Furthermore, on every trial, the adviser
can also choose to provide either helpful or misleading advice,
depending on whatever strategy he may be employing; in turn,
these differences in strategy across advisers elicit differences in the
adaptive behavior of the players.

To explain the ensuing variability in adaptive behavior across
subjects, we modeled the players’ learning using a systematic set of
alternative models that factorially combined different models of
learning behavior (‘‘perceptual models’’) and decision-making
(‘‘response models’’). Using Bayesian model selection, we demon-
strated that a hierarchical Bayesian model (the hierarchical
Gaussian filter, HGF) with three levels best described the players’
learning in the task. This suggests that participants updated their
beliefs about advice reliability depending on an ongoing estimate
of the volatility of the adviser’s intentions, and that this estimate of
volatility directly informed the trial-wise decisions. This three-level
HGF outperformed simpler non-hierarchical models (such as
Rescorla-Wagner), indicating that during social exchanges, par-
ticipants employ a multilevel model of their environment and are
capable of learning how others’ intentions to be helpful or
misleading fluctuate over time. These higher-order expectations
are in turn exploited to update trial-by-trial predictions about
advice reliability.

An important contribution of this paper is the translation of a
recent Bayesian framework for comparing alternative cognitive
models [15,16,22] to the domain of social interactions. The
implementation of this framework in the present study, however,
has one significant limitation: The present models aimed to
explain only the players’ learning during the game, and not the
advisers’. That is, they neglected the recursive process of
perspective-taking (in other words, the player’s belief about the
adviser’s belief about the player’s belief etc.), which occurs in many

Table 6. Family-level inference (response model set): Posterior model probability or p rDyð Þ and model exceedance probabilities w.

Integrated Reduced: Advice Reduced: Cue

p rDyð Þ 0.8740 0.0731 0.0529

w 0.9998 0.0004 0.0004

doi:10.1371/journal.pcbi.1003810.t006
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social situations. Recent studies (see [2,12,13,43]) used recursive
theory-of-mind models to explain social inference in cooperative
or multi-round trust games. These models propose that the
expected value of a given action (e.g., to cooperate or to compete
and to choose equitable or unfair offers) is a function of the other
agent’s strategy. Thus, players optimize their strategies or their
depth of recursive reasoning by taking into account their
opponents’ future actions. For example, Yoshida and colleagues
(2010a) showed that players who employ higher-order strategies,
which take into account the opponents’ future actions, forgo
immediate rewards for options that lead to higher pay-off but
require multi-player cooperation.

One important future direction of our work is to extend the
modeling of hierarchically coupled beliefs to take the depth of
recursive perspective-taking into account. Having said this, the
recursive depth of social inferences is typically limited [2,13]. For
example, Xiang et al. (2012) classified the depth of subjects’
reasoning during an investor-trustee game. Approximately half of
195 investors were classified as strategic level 0 players, suggesting
that they do not simulate their partner’s play, while the other half
employed either level 1 or level 2 depth-of-reasoning. Yoshida et
al., 2010a also reported significant variability in recursive depth
across individuals. In the present study, as described in the Results
section, more than half (9/16) of the advisers reported to have
adopted a fixed strategy (either consistently helpful or consistently
random throughout the game) and are thus unlikely to have
engaged in recursive perspective-taking. For the remaining
advisers, it is possible that modeling their belief updating processes
(in addition to those of the players) would lead to an even better
prediction of the players’ behavior. We will test this possibility in
future work, contrasting models with and without the represen-
tation of recursive interactions.

As it did not incorporate recursive perspective-taking, our study
focused on modeling the downstream consequences of the
differential strategies that advisers employed. The players’ belief-
updating process reflected the advisers’ policy and determined
how much they were willing to take the advisers’ suggestions into
account during decision-making. We found that players who
interacted with consistently helpful advisers perceived their
intentions to be stable over time and thus weighted their advice
more when predicting the outcome, as reflected by reduced values
in the meta-volatility parameter q and larger f values, respectively.

Furthermore, players who interacted with advisers, whose
intentions were changing to maximize their own winnings, showed
more pronounced k values. This result suggests that the two
hierarchical learning levels were more strongly coupled in this
subset of participants, and that the volatility estimate was used to
update the beliefs about advice accuracy. Unlike in the case of
consistently misleading advisers, in this particular social exchange,
the volatility of the advisers’ intentions was more traceable. Thus,
players could benefit from inferring on the volatility of the
advisers’ intentions to predict the advice accuracy.

Beyond reflecting the adviser’s policy in the parameter
estimates, our model exhibited construct validity in two ways:
First, its posterior parameter estimates predicted participants’
scores on the IRI, a questionnaire, which they completed prior to
participation in the study. Players, who described themselves as
proficient perspective-takers, exhibited a more stable model of the
adviser as reflected by the less pronounced tonic component of the
learning rate. Second, the model’s posterior parameter estimates
also predicted the participants’ explicit ratings of the advisers’
helpfulness throughout the game. Notably, this relationship was
specific for the hierarchical Bayesian model while the parameter
estimates from the competing RW model did not show this
predictive capacity.

As described above, model comparison indicated that the
participants’ behavior was best explained by a hierarchical model
in which estimates of volatility (of the adviser’s intentions) played a
key role for belief updating. Furthermore, beyond inference and
with respect to the translation of beliefs to decisions, we found that
a response model in which participants’ estimates of the volatility
of the advisers’ intentions determined their trial-wise decisions
explained participants’ choice behavior best. That is, the mapping
from beliefs to choices was increasingly deterministic the more the
player considered the adviser’s intentions to be currently stable. By
contrast, when the player’s estimates of the adviser’s volatility
increased, the relation between beliefs and decisions became more
stochastic and the player exhibited a more exploratory behavior.
This result demonstrates the direct relevance of volatility estimates
for determining trial-by-trial variability of decisions; note that this
is distinct from (and complementary to) our findings on the role of
volatility for learning and inference, described in the context of
comparing different perceptual models above. The finding that
volatility is an important factor determining trial-by-trial choice

Table 7. Average maximum a posteriori estimates of the free parameters in the winning models of the social and control tasks.

Social Interactive Task Control Task

Model: HGF with Volatility (M1) Model: HGF with Decision Noise (M4)

Model Parameters Mean SD Model Parameters Mean SD

m
k~0ð Þ

2
0.48 0.53 m

k~0ð Þ
2

0.37 0.53

s k~0ð Þ
2

1.06 0.27 s k~0ð Þ
2

1.11 0.62

m
k~0ð Þ

3
0.42 0.61 m

k~0ð Þ
3

0.97 0.02

s
k~0ð Þ

3
1.05 0.13 s

k~0ð Þ
3

1.00 0.001

k 0.31 0.29 k 0.18 0.05

v 25.92 2.93 v 25.84 2.55

q 0.44 0.27 q 0.47 0.06

f 0.39 0.12 f 0.28 0.11

b 4.86 1.86 b 6.33 2.83

doi:10.1371/journal.pcbi.1003810.t007
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variability goes beyond previous studies, which examined the
impact of volatility with respect to inference only (e.g.,
[14,22,25,44]). Moreover, in the context of social learning, these
results stress the deployment of a hierarchical model and a key role
of volatility estimates for both inference and decision-making.
These are important in that they complement concepts of social
learning, which emphasize the role of simple heuristics (e.g., [45])
or refer to non-hierarchical reinforcement learning (e.g., [46]).

Similar to what Behrens and colleagues (2008) observed, we
found that participants did not base their decision on a single
source of information, but integrated the advice with information
from the visual pie chart, which was also probabilistic but had a
known outcome distribution. That is, the uncertainty of the
information provided by the pie chart was directly given on each
trial, whereas the uncertainty of the advice had to be estimated
online. This can be related, to some degree, to the distinction
between risk and ambiguity [47–49].

Our modeling results show that participants were able to
trade-off between these different forms of uncertainty depending
on the type of adviser they faced (see Figures 6d–e and 7): when
interacting with generally helpful advisers, most players consid-
ered the advice strongly because, on average, it was more
accurate than the visual pie chart. However, when they
interacted with advisers who deliberately showed consistently
uninformative (random) behavior, participants tended to
discount their recommendation and relied more strongly on
the visual pie chart. This is remarkable since it means that
players did not display a uniform tendency to avoid ambiguity;
instead, ambiguity aversion was restricted to interactions with
an unhelpful adviser.

Additionally, we found that the different sources of information
(cue and advice) did not receive equal weight during decision-
making. Consistent with previous findings [50], we observed that
participants relied more on the non-ambiguous information (i.e.,

Figure 6. Construct validity of model parameters. The perceptual model parameter k and v (A) predicted players’ self-report scores on the
Interpersonal Reactive Index (IRI). The perceptual model parameter q and response model parameter f predicted players’ performance accuracy (B
and C). Additionally, the perceptual model parameter k and q and response model parameter f also predicted the strategy of the advisers with whom
players interacted (C–E).
doi:10.1371/journal.pcbi.1003810.g006

Table 8. Predictive validity of model parameters: (a) Perceptual model parameters k and v predicted participants’ IRI scores.

R2 F statistic p value

Log Bayes
Factor (Full
versus null model) Free Energy

(i) Parameters k and v predict IRI scores

0.50 6.03 0.02 15.16 240.87

(ii) Parametersq and f predict
performance

0.40 9.41 0.01 17.59 2146.29

doi:10.1371/journal.pcbi.1003810.t008
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Table 9. Results of Bayesian model selection (control condition): Posterior model probability or p rDyð Þ
probabilities w.

HGF with
Volatility

HGF with
Decision Noise

No Volatility
HGF Rescorla-Wagner

Integrated p rDyð Þ 0.3187 0.3516 0.0184 0.0698

w 0.4112 0.5422 0.0001 0.0049

Reduced: Advice p rDyð Þ 0.0166 0.0168 0.0178 0.0165

w 0.0001 0.0005 0.0003 0.0003

Reduced: Cue p rDyð Þ 0.0179 0.0696 0.0170 0.0692

w 0 0.0198 0.0002 0.0204

doi:10.1371/journal.pcbi.1003810.t009

Figure 7. The learning trajectories about advice accuracy and adviser volatility in several representative participants. (A) Subject
SL_010 interacted with a consistently helpful adviser; the parameter estimate of f was 0.54, suggesting that he took into account the advice more
than the non-social cue. (B) Subject SL_005 interacted with a consistently misleading adviser; the estimate of f was 0.12, indicating that he relied
almost exclusively on the non-social cue when predicting the outcome. Additionally, high levels of q indicate that the player perceived the advice as
highly volatile over the course of interaction. (C) Subject SL_013 interacted with an adviser who provided helpful advice at the beginning of the
game, and then changed his strategy half-way through the game offering misleading advice. This player adapts to changes in his environment, i.e., to
the advice accuracy and the adviser volatility. (D) Subject SL_015 interacted with an adviser who employed a similar strategy as in (C); however, the
estimate of v was significantly reduced suggesting that the player did not greatly change his beliefs during the interaction because his prior
estimates were consistent with the adviser’s actual strategy.
doi:10.1371/journal.pcbi.1003810.g007
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the non-social cue) compared to the advice. Previous models
[51,52] describing how people integrate social and non-social
sources emphasized the importance of ambiguity that is intrinsic to
social exchange: We are uncertain about how uncertain our
appraisal of the other agent’s intentions is.

Previous work on uncertainty in repeated advice taking showed
that, surprisingly, decision-makers do not become more confident
in their choices with increasing advice accuracy [53]. Although we
did not explicitly ask subjects to rate confidence or uncertainty,
our modeling results did take into account how their inferred
estimates of uncertainty (about the adviser’s intentions) informed
their trial-wise decisions.

Furthermore, analysis of a control condition in which trial-wise
advice was randomly sampled (by a blindfolded adviser) from
several decks of cards with either 80% or 20% accuracy suggested
that participants relied more on the advice when it was intentional,
as opposed to unintentional. This behavior was observed even
though it was perfectly possible to extract predictive information
from the card decks with the same accuracy as from a helpful
adviser. Since players based their decisions more on the visual pie
chart and did not take advantage of the advice, their performance
was significantly lower than in the social condition.

Beyond the results per se and their implications for concepts of
social learning, the modeling approach in this paper, with its
emphasis on inter-individual variability in inference and decision-
making, may serve useful for future studies of social learning. To
facilitate this, the HGF and the BMS routines are freely available
as open source MATLAB code (the HGF can be found at www.
translationalneuromodeling.org/tapas; the BMS routines are part
of the SPM software package: www.fil.ion.ucl.ac.uk/spm).

Finally, we believe that the approach presented here has
potential for characterizing mechanisms of maladaptive behavior
in individual patients. The present study in healthy volunteers
provides a proof of concept how individual mechanisms can be
elucidated in the context of social interactions, a domain where
many psychiatric disorders, including schizophrenia, are charac-
terized by particularly salient deficiencies [54]. For example, many
patients with schizophrenia exhibit a negative attribution bias
about others’ intentions, which reflects the finding that negative
information is perceived as more diagnostic of another person’s
true character than positive information [55–57]. One attractive
option is to use models as the one described in this study for
computational phenotyping of patients from heterogeneous
disorders [58–60]. For example, patients may show a diminished
ability to dynamically infer on the intentions of others for different
reasons: they may have overly tight prior beliefs about others’
motivations, or they may suffer from an abnormality in belief
updating mechanisms, which in turn could be due to aberrant
computations of prediction error, precision or both (see Eq. 6
above). In other words, models of cognition such as the one
introduced here and in previous studies may prove useful to
propose potential nosological dimensions with mechanistic inter-
pretability and disambiguate alternative mechanisms in individual
patients through model selection [61]. This study serves as a
precursor for future neuroimaging studies, in which we hope to

investigate neuronal mechanisms of social learning and tracking
the volatility of another agent’s intentions.

Supporting Information

Figure S1 The performance of BMS was evaluated and the
results are summarized in confusion matrices. Each cell includes
the frequency with which each perceptual model wins (over
simulation instances) based on data generated under each model
(in rows) and inverted by itself and all other models (in columns).
Thus, off-diagonal elements indicate the probability that the
source of data generated by one model is ‘‘confused’’ with another
model due to the inversion and model selection procedure.
(TIF)

Figure S2 Log Bayes factors comparing the winning model (the
three-level HGF augmented by the ‘‘Volatility’’ response model
(M1)) to the rest of the models across all subjects. The Bayes
factors, which exceed the dotted line, (i.e., Bayes factor .100 or
log evidence difference .10), represent strong evidence that the
winning model outperforms the rest, according to conventional
classifications (see [62]). One can see that with the exception of
two subjects (SL_005 and SL_010), there is strong evidence
favouring model M1 over all other models.
(TIF)

Figure S3 Group Bayes factors comparing the winning model
(the three-level HGF augmented by the ‘‘Volatility’’ response
model (M1)) to the rest of the models. The Bayes factors, which
exceed the dotted line, (i.e., Bayes factor of 100) suggest strong
evidence that the winning model outperforms the rest, which
exceed this threshold according to conventional classifications (see
[62]).
(TIF)

Figure S4 Linear regression analysis of the player-specific
ratings of the advisers and the model estimates: We aimed to
explain participants’ ratings of the advisers’ intentions (dependent
variable) using the estimates of advice reliability as inferred from
the model (explanatory variable). The plot contains the player-
specific ratings, trial-specific m̂m1 values, and the player-specific beta
estimates from the first level regression analysis.
(TIF)

Video S1 The relationship between f and m3 in the response
model. Parameter f determines the weight of the advice, and

e({m
k{1ð Þ

3
) represents the inverse of the adviser phasic volatility

estimate. As the inverse of m3 approaches ‘, the estimated
volatility of the adviser’s intentions decreases, and decisions are
more consistent with the players’ beliefs.
(MOV)
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