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Uncertainty: a shamelessly artificial example

Imagine the following situation:

You're on a boat, you're lost in a storm and trying to get back to shore. A
lighthouse has just appeared on the horizon, but you can only see it when
you're at the peak of a wave. Your GPS etc., has all been washed overboard,
but what you can still do to get an idea of your position is to measure the
angle between north and the lighthouse. These are your measurements (in
degrees):

76,73,75,72,77
What number are you going to base your calculation on?

Right. The mean: 74.6. How do you calculate that?
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Uncertainty: updates to the mean

The usual way to calculate the mean x of x4, x5, ..., x;, is to take

Xi

£

1
X =—
n
=1

This requires you to remember all x;, which can become inefficient. Since the
measurements arrive sequentially, we would like to update x sequentially as
the x; come in - without having to remember them.

It turns out that this is possible. After some algebra (see next slide), we get

Xn = Xp-1 t n (X — Xp-1)
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Uncertainty: updates to the mean

Proof of sequential update formula:

n n-—1 n-—1
_ 1 x, 1 x, n—1 1
Xpn=—) X;=—+— x; =—+ X; =
n n N« n n n—1c¢
i=1 i=1 =1
=Xn-1
xn+n—1_ _ +xn+n—1 n _
— x_1=x_1 x_l__x -1 —
n n " " n n " n "

= Xp-1t+ E (xn +(n—1- n)fn—l) = Xp—1 T a (xn — fn—l)

g.e.d.
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Uncertainty: updates to the mean

The seqgential updates in our example now look like this:

T T T i >
72 73 74 75 7|6 77

_ 1 _
X4 =746 + 7 (72 —74.6) =74

1
. _ 1
%, = 76 +5 (73 = 76) = 745 %5 =74+ (77 = 74) = 746

1 _
Ty =745+ (75— 74.5) = 746
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What are the building blocks of the updates
we've just seen, and where does uncertainty
enter?

new input

prediction error

prediction

weight (learning rate)

So where is uncertainty?

The learning rate reflects uncertainty:
the less we know, the higher the learning rate.
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Is this a general pattern?

e More specifically, does it generalize to Bayesian inference?

e «Bayesian inference» simply means inference on uncertain quantities
according to the rules of probability theory (i.e., according to logic).

e Agents who use Bayesian inference will make better predictions
(provided they have a good model of their environment), which will give
them an evolutionary advantage.

e We may therefore assume that evolved biological agents use Bayesian
inference, or a close approximation to it.

e So is Bayesian inference based on predictions that are updated using
uncertainty-weighted prediction errors?
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Updates in a simple Gaussian model

Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference.

Before we make the next observation, our belief about the true angle 9 can be described by
a Gaussian prior:

p(9) ~ N (ug, m5™)
The likelihood of our observation is also Gaussian, with precision m,:
p(x9) ~ N, mzt)

Bayes’ rule now tells us that the posterior is Gaussian again:

p(x|9)p(9)
[ p(x|9Np)dY’

p(d|x) = ~ N 1oy m3)5)
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Updates in a simple Gaussian model

Here’s how the updates to the sufficent statistics u and m describing our belief look like:

«— Dbrediction error

how much we're learning here

predlCtlon Welght (learmng rate)— how much we already know

So it's the same story all over again: the mean is updated by an uncertainty-weighted (more
specifically: prediction-weighted) prediction error.

The size of the update is proportional to the likelihood precision and inversely proportional
to the posterior precision.

This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian
updates for all exponential families of likelihood distributions with conjugate priors (i.e., to

all formal descriptions of inference you are ever likely to need).
9
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Does inference as we've described it adequately
describe the situation of actual biological agents?

Agent | World .
S No, the dynamics

Sensory input -
are missing!

Inferred
hidden states

True
hidden states

Action

10
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What about dynamics?

e Up to now, we've only looked at inference on static quantities, but
biological agents live in a continually changing world.

e In our example, the boat’s position changes and with it the angle to the
lighthouse.

e How can we take into account that old information becomes obsolete? If
we don’t, our learning rate becomes smaller and smaller because our
eqations were derived under the assumption that we're accumulating
information about a stable quantity.

11
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What's the simplest way to keep the learning
rate from going too low?

Keep it constant!

So, taking the update equation for the mean of our observations as our point of
departure...

: 1,
e .. wesimply replace - with a constant a:

tn = Un-1 + a(n — p_1).

This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that
led Rescorla & Wagner (1972) to their formulation].

12
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Does a constant learning rate solve our problems?

Partly: it implies a certain rate of forgetting because it amounts to taking
1 .
only then = - last data points into account. But...

e .. if the learning rate is supposed to reflect uncertainty in Bayesian
inference, then how do we

e (a) know that a reflects the right level of uncertainty at any one time, and
e (b) account for changes in uncertainty if « is constant?

e What we really need is an adaptive learning that accurately reflects
uncertainty.

13
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An adaptive learning rate that accurately
reflects uncertainty

e This requires us to think a bit more about what kinds of uncertainty we are dealing
with.

e A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour &
Bossaerts, 2011):

e (a) outcome uncertainty that remains unaccounted for by the model, called risk by
economists (. in our Bayesian example); this uncertainty remains even when we
know all parameters exactly,

e (b) informational or expected uncertainty about the value of model parameters (7,
in the Bayesian example),

e (c) environmental or unexpected uncertainty owing to changes in model parameters
(not accounted for in our Bayesian example, hence unexpected).

14
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An adaptive learning rate that accurately
reflects uncertainty

e Various efforts have been made to come up with an adaptive learning rate:
- Kalman (1960)
— Sutton (1992)
— Nassar etal. (2010)
- Payzan-LeNestour & Bossaerts (2011)
- Mathysetal. (2011)
- Wilson et al. (2013)

e The Kalman filter is optimal for linear dynamical systems, but realistic data
usually require non-linear models.

e Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us
to derive update equations that are optimal in the sense that they minimize
surprise.

15
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The hierarchical Gaussian filter (HGF)

o (:49)

x,(lk) ~N (x,(lk_l), 19)

xék—l)

k _
2O (207, e

(k—1)
()
k _
p(xik)) (k-1) xé )NN (xgk 1);f2(x3)>
x5
k _
xi ) N(xik Y f1(x2))
xik—l)

16
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The hierarchical Gaussian filter (HGF)

e Atthe outcome level (i.e., at the very bottom of the hierarchy), we have
u® ~ v (xik),ﬁljl)
e This gives us the following update for our belief on x; (our quantity of interest):
=7l + 1,

W _ k-1, Tu (g9 (-1
i = g+ = (u® - )
1

e The familiar structure again - but now with a learning rate that is responsive to
all kinds of uncertainty, including environmental (unexpected) uncertainty.

17



\ZIS MAX PLANCK UCL CENTRE

for Computational Psychiatry and Ageing Research ”

The learning rate in the HGF

Unpacking the learning rate, we see:

outcome uncertainty

/

A\ pa pa

Ty Ty Ty

- — A
2+ a, 1

+ 7T
al(k_l) +(exp (Kl,ugk_l) + w4 -

environmental
uncertainty

informational
uncertainty

18
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The learning rate in the HGF
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HGF: empirical evidence (Iglesias et al., 2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
HGF3 0.0361 0 0.1404 0 0.1304 0
Sutton 0.0685 0 0.0710 0 0.0761 0
RW 0.0260 0 0.0264 0 0.0769 0

20
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HGF: empirical evidence (Iglesias et al., 2013)

first fMRI study second fMRI study conjunction across studies
x=3,y=25z=47 x=0,y=25z=47 x=0,y=25z=47

Figure 2. Whole-Brain Activations by ¢,

Activations by precision-weighted prediction error about visual stimulus outcome, &5, in the first fMRI study (A) and the second fMRI study (B). Both activation
maps are shown at a threshold of p < 0.05, FWE corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the
results of a “logical AND" conjunction, illustrating voxels that were significantly activated in both studies.

21
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HGF: empirical evidence (Iglesias et al., 2013)

Figure 3. Midbrain Activation by &,
Activation of the dopaminergic VTA/SN associ-
ated with precision-weighted prediction error

-~ -~ N ! : A :

3 about stimulus category, e,. This activation is

shown both at p < 0.05 FWE whole-brain corrected

(red) and p < 0.05 FWE corrected for the volume of

- ‘ " our anatomical mask comprising both dopami-

- . - nergic and cholinergic nuclei (yellow).
”~ (A) Results from the first fMRI study.
v (B) Second fMRI study.

.
first MR study second Mtudy conjunction = z=-18 (C) Conjunction (logical AND) across both studies.

22
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HGF: empirical evidence (Iglesias et al., 2013)

" T,
s
-
first fIMRI study
B
l second fMRI study

conjunction across studies

Figure 6. Basal Forebrain Activations by g5

Activation of the cholinergic basal forebrain associated with precision-
weighted prediction error about stimulus probabilities e; within the anatomi-
cally defined mask. For visualization of the activation area we overlay the
results thresholded at p < 0.05 FWE corrected for the entire anatomical mask
(red) on the results thresholded at p < 0.001 uncorrected (yellow) in the first (A:
¥=13,y=9, 2= —8)and the second fMRI study (B:x=0,y=10,z=—8). (C) The
conjunction analysis ("logical AND") across both studies (x=2,y=11,z= —8).

23
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How to estimate and compare models:
the HGF Toolbox

 Available at

http://www.translationalneuromodeling.org/tapas
e Start with README, manual, and interactive demo
* Modular, extensible

« Matlab-based

24
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Why is this important for computational psychiatry?

A failure of sensory or interoceptive attenuation may be at the root of
many clinical phenomena.

Cogn Process (2013) 14:411-427
DOL 10.1007/510339-013-0571-3

RESEARCH REPORT

Active inference, sensory attenuation and illusions
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PSYCHOLOGY | SEVIER journal homepage: www.elsevier.com/locate/neubiorev
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C ‘VVP’\;I'h.‘t '
Scted Degs Free-energy and review
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i:..»;::ﬁn:.: This artict Edited by: In The Wellcome Trust Centre for Neuroimaging, UCL, 1.2 Queen Square, London WCIN 3BG, UK

S RaA unexplain Lars Muckli University of Glasgow,
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Example: Abnormalities of smooth pursuit eye movements
in schizophrenia

Angular position
2 =
_ / /
8
8 (L eye
g target "o
B, oA
S 1} y
2! - Nk - eye (reduced
: | , precision)
500 1000 1500 2000 2500 3000
Angular velocity
-~ 50I-
g
§ O .
g 30 '.
8 201 {
g
> A
_g 0t -
10} “~ - -
200
|
500 1000 1500 2000 2500 3000
time (ms)

Thaker et al., 1999; Hong et al., 2005; Adams et al., 2013 26
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stimulus
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Friston, 2008
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Example: Hierarchical message passing in the visual-
oculomotor system

~ 1
aaS 5\/()

oculomotor

signals
reflex arc

proprioceptive input

retinal input a . . .
Perception Precision-weighted

prediction errors

/

Errors (superficial pyramidal cells)

; N geniculate
(O & (0F20)-
A s
(O & (0F(
........ g gx _Hx &y

Expectations (deep pyramidal cells)
~(l) — Dy(l) a 5(') (:z(i) _ét(i+1)
visual cortex ’“(') = D/J(I) 0, g0 . g

Adams et al,, 2013 28
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Overweighting of sensory evidence

RN

posterior expectation
posterior belief / }

sensory evidence
(likelihood)

increased sensory precision
prior belief

Adams etal.,, 2013 /J\&

decreased prior precision

29
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Smooth pursuit of a partially occluded target with and
without high-level precision

displacement (degrees)

vebcity (degrees per second)

N

_.
|

Angular position

N - -

eye (reduced
precision)

500

Adams et al.,, 2013

1000 1500 2000

Angular velocity

1000 1500 2000
time (ms)

2500

2500

3000

3000

30
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Failure of input attenuation: further examples

* Force matching illusion (Shergill et al., 2003; 2005; Teufel et al., 2010;
Brown et al., 2013)

* Cornsweet effect (Brown & Friston, 2012)

* Hollow mask illusion (Dima et al., 2009; 2010)

https://www.youtube.com /watch?v=0RoTCBrCKIQ

https://www.youtube.com /watch?v=6YIPt]ICbIA

« Attenuation of interoceptive signals in autism (Lawson et al., 2014;

Quattrocki & Friston, 2014)

31
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* We have to make good predictions to avoid surprise and survive, that is
we have to use probabilistic (i.e., Bayesian) inference based on a good

model of our environment.

* Bayesian inference means updating beliefs by uncertainty- (i.e.,

precision-) weighted prediction errors.
* Precision-weighting has to take account of all forms of uncertainty.

* A breakdown in this may be the root of many psychopathological

phenomena.
32
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Thanks
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