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Imagine the following situation: 

 

You’re on a boat, you’re lost in a storm and trying to get back to shore. A 
lighthouse has just appeared on the horizon, but you can only see it when 
you’re at the peak of a wave. Your GPS etc., has all been washed overboard, 
but what you can still do to get an idea of your position is to measure the 
angle between north and the lighthouse. These are your measurements (in 
degrees): 

 

76, 73, 75, 72, 77 

 

What number are you going to base your calculation on? 

 

Right. The mean: 74.6. How do you calculate that? 
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Uncertainty: a shamelessly artificial example 



The usual way to calculate the mean 𝑥  of 𝑥1, 𝑥2, … , 𝑥𝑛 is to take 

 

𝑥 =
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

 

This requires you to remember all 𝑥𝑖 , which can become inefficient. Since the 
measurements arrive sequentially, we would like to update 𝑥  sequentially as 
the 𝑥𝑖  come in – without having to remember them. 

 

It turns out that this is possible. After some algebra (see next slide), we get 

 

𝑥 𝑛 = 𝑥 𝑛−1 +
1

𝑛
𝑥𝑛 − 𝑥 𝑛−1  
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Uncertainty: updates to the mean 



Proof of sequential update formula: 

 

𝑥 𝑛 =
1

𝑛
 𝑥𝑖 =

𝑥𝑛

𝑛

𝑛

𝑖=1

+
1

𝑛
 𝑥𝑖 =

𝑥𝑛

𝑛

𝑛−1

𝑖=1

+
𝑛 − 1

𝑛

1

𝑛 − 1
 𝑥𝑖

𝑛−1

𝑖=1

=𝑥 𝑛−1

= 

  

      =
𝑥𝑛

𝑛
+

𝑛 − 1

𝑛
𝑥 𝑛−1 = 𝑥 𝑛−1 +

𝑥𝑛

𝑛
+

𝑛 − 1

𝑛
𝑥 𝑛−1 −

𝑛

𝑛
𝑥 𝑛−1 = 

  

      = 𝑥 𝑛−1 +
1

𝑛
𝑥𝑛 + 𝑛 − 1 − 𝑛 𝑥 𝑛−1 = 𝑥 𝑛−1 +

1

𝑛
𝑥𝑛 − 𝑥 𝑛−1  

q.e.d. 
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Uncertainty: updates to the mean 



The seqential updates in our example now look like this: 
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Uncertainty: updates to the mean 

72 73 74 75 76 77 

𝑥 1 = 76 

𝑥 2 = 76 +
1

2
73 − 76 = 74.5 

𝑥 3 = 74.5 +
1

3
75 − 74.5 = 74.6  

𝑥 4 = 74.6 +
1

4
72 − 74.6 = 74 

𝑥 5 = 74 +
1

5
77 − 74 = 74.6 



𝑥 𝑛 = 𝑥 𝑛−1 +
1

𝑛
𝑥𝑛 − 𝑥 𝑛−1  
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What are the building blocks of the updates 
we’ve just seen, and where does uncertainty 
enter? 

prediction 

prediction error 

new input 

weight (learning rate) 

So where is uncertainty? 
 
The learning rate reflects uncertainty:  
the less we know, the higher the learning rate. 



• More specifically, does it generalize to Bayesian inference? 

 

• «Bayesian inference» simply means inference on uncertain quantities 
according to the rules of probability theory (i.e., according to logic). 

 

• Agents who use Bayesian inference will make better predictions 
(provided they have a good model of their environment), which will give 
them an evolutionary advantage. 

 

• We may therefore assume that evolved biological agents use Bayesian 
inference, or a close approximation to it. 

 

• So is Bayesian inference based on predictions that are updated using 
uncertainty-weighted prediction errors? 
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Is this a general pattern? 



• Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference. 

 

• Before we make the next observation, our belief about the true angle 𝜗 can be described by 
a Gaussian prior: 

 
𝑝(𝜗) ∼ 𝒩(𝜇𝜗, 𝜋𝜗

−1) 

 

• The likelihood of our observation is also Gaussian, with precision 𝜋𝜀: 

 
𝑝 𝑥 𝜗 ∼ 𝒩 𝜗, 𝜋𝜀

−1  

 

• Bayes’ rule now tells us that the posterior is Gaussian again: 

 

𝑝 𝜗 𝑥 =
𝑝 𝑥 𝜗 𝑝(𝜗)

 𝑝 𝑥 𝜗′ 𝑝 𝜗′ d𝜗′
∼ 𝒩 𝜇𝜗|𝑦, 𝜋𝜗|𝑦

−1  
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Updates in a simple Gaussian model 



• Here’s how the updates to the sufficent statistics 𝜇 and 𝜋 describing our belief look like: 

 
𝜋𝜗|𝑥 = 𝜋𝜗 + 𝜋𝜀 

 

𝜇𝜗|𝑥 = 𝜇𝜗 +
𝜋𝜀

𝜋𝜗|𝑥
(𝑥 − 𝜇𝜗) 

 

 

 

• So it’s the same story all over again: the mean is updated by an uncertainty-weighted (more 
specifically: prediction-weighted) prediction error. 

 

• The size of the update is proportional to the likelihood precision and inversely proportional 
to the posterior precision. 

 

• This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian 
updates for all exponential families of likelihood distributions with conjugate priors (i.e., to 
all formal descriptions of inference you are ever likely to need). 
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Updates in a simple Gaussian model 

prediction weight (learning rate)=
how much we′re learning here

how much we already know
 

prediction error 
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Does inference as we’ve described it adequately 
describe the situation of actual biological agents? 

𝜆 𝑥 

Sensory input 

True 
hidden states 

Inferred 
hidden states 

Action 

𝑢 

𝑎 

World Agent 
No, the dynamics 
are missing! 



• Up to now, we’ve only looked at inference on static quantities, but 
biological agents live in a continually changing world. 

 

• In our example, the boat’s position changes and with it the angle to the 
lighthouse. 

 

• How can we take into account that old information becomes obsolete? If 
we don’t, our learning rate becomes smaller and smaller because our 
eqations were derived under the assumption that we’re accumulating 
information about a stable quantity. 
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What about dynamics? 



• Keep it constant! 

 

• So, taking the update equation for the mean of our observations as our point of 
departure... 

 

𝑥 𝑛 = 𝑥 𝑛−1 +
1

𝑛
𝑥𝑛 − 𝑥 𝑛−1 , 

 

• ... we simply replace 
1

𝑛
 with a constant 𝛼: 

 
𝜇𝑛 = 𝜇𝑛−1 + 𝛼 𝑥𝑛 − 𝜇𝑛−1 . 

 

• This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that 
led Rescorla & Wagner (1972) to their formulation]. 
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What’s the simplest way to keep the learning 
rate from going too low? 



• Partly: it implies a certain rate of forgetting because it amounts to taking 

only the 𝑛 =
1

𝛼
 last data points into account. But... 

 

• ... if the learning rate is supposed to reflect uncertainty in Bayesian 
inference, then how do we 

 

• (a) know that 𝛼 reflects the right level of uncertainty at any one time, and 

 

• (b) account for changes in uncertainty if 𝛼 is constant? 

 

• What we really need is an adaptive learning that accurately reflects 
uncertainty. 
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Does a constant learning rate solve our problems? 



• This requires us to think a bit more about what kinds of uncertainty we are dealing 
with. 

 

• A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour & 
Bossaerts, 2011): 

 

• (a) outcome uncertainty that remains unaccounted for by the model, called risk by 
economists (𝜋𝜀  in our Bayesian example); this uncertainty remains even when we 
know all parameters exactly, 

 

• (b) informational or expected uncertainty about the value of model parameters (𝜋𝜗|𝑥 

in the Bayesian example), 

 

• (c) environmental or unexpected uncertainty owing to changes in model parameters 
(not accounted for in our Bayesian example, hence unexpected).  
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An adaptive learning rate that accurately 
reflects uncertainty 



• Various efforts have been made to come up with an adaptive learning rate: 

– Kalman (1960) 

– Sutton (1992) 

– Nassar et al. (2010) 

– Payzan-LeNestour & Bossaerts (2011) 

– Mathys et al. (2011) 

– Wilson et al. (2013) 

 

• The Kalman filter is optimal for linear dynamical systems, but realistic data 
usually require non-linear models. 

 

• Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us 
to derive update equations that are optimal in the sense that they minimize 
surprise. 
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An adaptive learning rate that accurately 
reflects uncertainty 
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The hierarchical Gaussian filter (HGF) 

𝑝 𝑥𝑛
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑛
(𝑘)

~𝒩 𝑥𝑛
(𝑘−1)

, 𝜗  

𝑥1
(𝑘)

~𝒩 𝑥1
𝑘−1

, 𝑓1 𝑥2  

𝑝 𝑥1
(𝑘)

 

𝑥1
(𝑘−1)

 

𝑥2
(𝑘)

~𝒩 𝑥2
𝑘−1

, 𝑓2 𝑥3  

𝑝 𝑥2
(𝑘)

 

𝑥2
(𝑘−1)

 

𝑥𝑖
(𝑘)

~𝒩 𝑥𝑖
𝑘−1

, 𝑓𝑖 𝑥𝑖+1  

𝑝 𝑥𝑖
(𝑘)

 

𝑥𝑖
(𝑘−1)

 



• At the outcome level (i.e., at the very bottom of the hierarchy), we have 

 

𝑢(𝑘) ~ 𝒩 𝑥1
𝑘

, 𝜋 𝑢
−1  

 

• This gives us the following update for our belief on 𝑥1 (our quantity of interest): 

 

𝜋1
(𝑘)

= 𝜋 1
(𝑘)

+ 𝜋 𝑢 

 

𝜇1
(𝑘)

= 𝜇1
(𝑘−1)

+
𝜋 𝑢

𝜋1
(𝑘)

𝑢 𝑘 − 𝜇1
(𝑘−1)

 

 

• The familiar structure again – but now with a learning rate that is responsive to 
all kinds of uncertainty, including environmental (unexpected) uncertainty. 
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The hierarchical Gaussian filter (HGF) 



Unpacking the learning rate, we see: 

 

 

 
𝜋 𝑢

𝜋1
(𝑘)

=
𝜋 𝑢

𝜋 1
(𝑘)

+ 𝜋 𝑢
=

𝜋 𝑢
1

𝜎1
(𝑘−1)

+ exp 𝜅1𝜇2
(𝑘−1)

+ 𝜔1

+ 𝜋 𝑢
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The learning rate in the HGF 

informational 
uncertainty 

environmental 
uncertainty 

outcome uncertainty 
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The learning rate in the HGF 

Andreea Diaconescu 
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HGF: empirical evidence (Iglesias et al., 2013) 

Model comparison: 
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HGF: empirical evidence (Iglesias et al., 2013) 
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HGF: empirical evidence (Iglesias et al., 2013) 
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HGF: empirical evidence (Iglesias et al., 2013) 
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How to estimate and compare models: 
the HGF Toolbox 

• Available at 

http://www.translationalneuromodeling.org/tapas 

• Start with README, manual, and interactive demo   

• Modular, extensible 

• Matlab-based 



A failure of sensory or interoceptive attenuation may be at the root of 
many clinical phenomena. 
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Why is this important for computational psychiatry? 
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Example: Abnormalities of smooth pursuit eye movements 
in schizophrenia 

Thaker et al., 1999; Hong et al., 2005; Adams et al., 2013 
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The neurobiology of the Bayesian brain: predictive coding 

(1)

x

(1)

x

(1)
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Friston, 2008 
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Example: Hierarchical message passing in the visual-
oculomotor system 

frontal eye fields geniculate 

visual cortex 

retinal input 

pons 

oculomotor 
signals 

( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( )

i i i i i

v v v v

i i i i

x x x

D

D

    

   

   

  
( )i

( )i

Errors (superficial pyramidal cells) 

Expectations (deep pyramidal cells) 

Top-down or 
backward predictions 

Bottom-up or forward 
prediction error 

proprioceptive input 
reflex arc 

Perception 

Action 

(1)
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( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
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( ( , ))

( ( , ))
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g

f
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    

   

  

Precision-weighted 
prediction errors 

Adams et al., 2013 
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Overweighting of sensory evidence 

Adams et al., 2013 
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Smooth pursuit of a partially occluded target with and 
without high-level precision 

Adams et al., 2013 
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Failure of input attenuation: further examples 

• Force matching illusion (Shergill et al., 2003; 2005; Teufel et al., 2010; 

Brown et al., 2013) 

 

• Cornsweet effect (Brown & Friston, 2012) 

 

• Hollow mask illusion (Dima et al., 2009; 2010) 

 https://www.youtube.com/watch?v=ORoTCBrCKIQ 

 https://www.youtube.com/watch?v=6YIPtJlCbIA 

 

• Attenuation of interoceptive signals in autism (Lawson et al., 2014; 

Quattrocki & Friston, 2014)  

https://www.youtube.com/watch?v=ORoTCBrCKIQ
https://www.youtube.com/watch?v=ORoTCBrCKIQ
https://www.youtube.com/watch?v=ORoTCBrCKIQ
https://www.youtube.com/watch?v=6YIPtJlCbIA
https://www.youtube.com/watch?v=6YIPtJlCbIA
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Summary 

• We have to make good predictions to avoid surprise and survive, that is 

we have to use probabilistic (i.e., Bayesian) inference based on a good 

model of our environment. 

 

• Bayesian inference means updating beliefs by uncertainty- (i.e., 

precision-) weighted prediction errors. 

 

• Precision-weighting has to take account of all forms of uncertainty. 

 

• A breakdown in this may be the root of many psychopathological 

phenomena. 
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Thanks 


