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Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from
neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience,
brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more
than one level, i.e., both in individual subjects and in the population from which these subjects were sampled.
Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-
effects (between-subjects) variance components.Whilemodels of this sort are standard inmass-univariate analyses
of fMRI data, they have not yet receivedmuch attention in multivariate classification studies of neuroimaging data,
presumably because of the high computational costs they entail. This paper extends a recently developed hierarchi-
cal model for mixed-effects inference in multivariate classification studies and introduces an efficient variational
Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally
simple to use as, yetmore powerful than, a conventional t-test on subject-specific sample accuracies, and computa-
tionally much more efficient than previous sampling algorithms and permutation tests. Our approach is indepen-
dent of the type of underlying classifier and thus widely applicable. The present framework may help establish
mixed-effects inference as a future standard for classification group analyses.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Multivariate classification algorithms have emerged from thefield of
machine learning as powerful tools for predicting cognitive or patho-
physiological states from neuroimaging data (Haynes and Rees, 2006).
Classifiers are based on decoding models that differ in two ways from
conventional mass-univariate encoding analyses based on the general
linear model (GLM; Friston et al., 1995). First, multivariate approaches
explicitly account for dependencies among voxels. Second, they reverse
the direction of inference, predicting a contextual variable from brain
activity (decoding) rather than the other way around (encoding).
There are three related areas of application in which these two charac-
teristics have sparked most interest.

In cognitive neuroscience, and in particular neuroimaging, classifiers
have been employed to decode subject-specific cognitive or perceptual
states frommultivariatemeasures of brain activity, such as those obtained
by fMRI (Brodersen et al., 2012b; Cox and Savoy, 2003; Haynes and Rees,
2006; Norman et al., 2006; Tong and Pratte, 2012). A second area is the

design of brain–machine interfaces which aim at decoding subjective
cognitive states (e.g., intentions or decisions) from trial-wise measure-
ments of neuronal activity in individual subjects (Blankertz et al., 2011;
Sitaram et al., 2008). A third important domain concerns clinical applica-
tions that explore the utility of multivariate decoding approaches for
diagnostic purposes (Davatzikos et al., 2008; Klöppel et al., 2008, 2012;
Marquand et al., 2010). Recently, decoding models have also been inte-
grated with biophysical models of brain function, such as dynamic causal
models (Friston et al., 2003), to afford mechanistically interpretable
classifications (Brodersen et al., 2011a,b).

Many applications ofmultivariate classification operate on datawith
a two-level hierarchical structure. Consider, for example, a study in
which a classification algorithm is used to decode from fMRI data
whether a subject chose option A or B on each of n experimental repeti-
tions or trials. This analysis gives rise to n estimated labels (representing
which choice the classifier predicted on each trial) and n true labels
(indicating which option was truly chosen). Comparing predicted to
true labels yields a sequence of classification outcomes (indicating for
each trial whether the prediction was correct or incorrect). Repeating
this analysis for each member of a group ofm subjects yields the typical
two-level structure (m subjects times n trials each) that is illustrated in
Fig. 1; for a concrete example see Figs. 7a,e. A two-level structure under-
lies virtually all trial-by-trial decoding studies (see, amongmany others,
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Brodersen et al., 2012b; Chadwick et al., 2010; Harrison and Tong, 2009;
Johnson et al., 2009; Krajbich et al., 2009). The same two-level structure
often applies to subject-by-subject classification studies (e.g., decoding
a diagnostic state or predicting a clinical outcome), especially when
subjects are partitioned into groups that are analyzed separately.

A hierarchical (or multilevel) design of this sort gives rise to the
questions of what we can infer about the accuracy of the classifier
in individual subjects, and what about the accuracy in the population
from which the subjects were sampled. Any approach to answering
these questions must provide a means of (i) estimation (e.g., of the
accuracy itself as well as an appropriate interval that describes our
uncertainty about the accuracy); and (ii) testing (e.g., whether the
accuracy is significantly above chance). This paper is concerned with
such subject-level and group-level inferences on classification accuracy
for multilevel data.

The statistical evaluation of classification performance in non-
hierarchical (e.g., single-subject) applications of classification has
been discussed extensively in the literature (Brodersen et al., 2010a;
Langford, 2005; Lemm et al., 2011; Pereira and Botvinick, 2011; Pereira
et al., 2009). By contrast, relatively little attention has thus far been de-
voted to evaluating classification algorithms in hierarchical (i.e., group)
settings (Goldstein, 2010; Olivetti et al., 2012). This is unfortunate since
the field would benefit from a broadly accepted standard.

Such a standard approach to evaluating classification performance in
a hierarchical setting should account for two independent sources of
variability: fixed-effects (i.e., within-subjects) variance that results from
uncertainty about the true classification accuracy in any given subject;
and random-effects variance (i.e., between-subjects variability) that
reflects the distribution of true accuracies in the population from
which subjects were sampled. This distinction is crucial because clas-
sification outcomes obtained in different subjects cannot be treated
as samples from the same distribution; in a hierarchical setting,
each subject itself has been sampled from a population with an
unknown intrinsic heterogeneity (Beckmann et al., 2003; Friston et
al., 2005). Models that explicitly separate both sources of uncertainty
are known asmixed-effectsmodels. They are the objects of interest in
this paper.

Contemporary approaches to performance evaluation in classifica-
tion group studies fall into several groups.1 One approach rests on the
pooled sample accuracy, i.e., the number of correctly predicted trials,
summed across all subjects, divided by the overall number of trials. The
statistical significance of the pooled sample accuracy can be assessed
using a simple classical binomial test (assuming the standard case of
binary classification) that is based on the likelihood of obtaining the ob-
served number of correct trials (or more) by chance (Langford, 2005). A
less frequent variant of this analysis uses the average sample accuracy
instead of the pooled sample accuracy (Clithero et al., 2011).

A second approach, more commonly used, is to consider subject-
specific sample accuracies and estimate their distribution in the popu-
lation. This method typically (explicitly or implicitly) uses a classical
one-tailed t-test across subjects to assess whether the population
mean accuracy is greater than what would be expected by chance
(e.g., Harrison and Tong, 2009; Knops et al., 2009; Krajbich et al.,
2009; Schurger et al., 2010).

In the case of single-subject studies, the firstmethod (i.e., a binomial
test on the pooled sample accuracy) is an appropriate approach. How-
ever, there are three reasons why neither method is optimal for group
studies. Firstly, both of the above methods neglect the hierarchical
nature of the experiment. The firstmethod (based on the pooled sample
accuracy) represents a fixed-effects approach and disregards variability
across subjects. This leads to overly optimistic inferences and provides
results that are only representative for the specific sample of subjects
studied, not for the population theywere drawn from. The secondmeth-
od (t-test on sample accuracies) does consider randomeffects; but it nei-
ther explicitly models the uncertainty associated with subject-specific
accuracies, nor does it account for violations of homoscedasticity
(i.e., the differences in variance of the data between subjects).

1 This paper focuses on parametric models for performance evaluation. While non-
parametric methods are available (e.g., based on permutation tests), these methods
can be very time-consuming in hierarchical settings and are not considered in detail
here (see e.g. Hassabis et al., 2009; Just et al., 2010; Pereira and Botvinick, 2011; Pereira
et al., 2009; Stelzer et al., 2013).
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Fig. 1. Overview of the outcomes generated by a classification group study. In a trial-by-trial classification analysis, a classifier is trained and tested, separately for each subject, to
predict a binary label (+ or−) from trial-wise correlates of brain activity. This constitutes a hierarchical design. The first level concerns trial-wise classification outcomes (where 1
and 0 represent correctly and incorrectly classified trials) that are drawn from latent subject-specific classification accuracies. The second level concerns subject-specific accuracies
themselves, which are drawn from a population distribution. When evaluating the performance of a classification algorithm, we are interested in inference on subject-specific
accuracies and on the population accuracy itself.
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The second limitation of the abovemethods is rooted in their distribu-
tional assumptions. In the standard case of binary classification, it is rea-
sonable to assume individual classification outcomes to follow binomial
distributions (justifying the binomial test in single-subject studies). How-
ever, it is not well founded to assume that sample accuracies follow a
Gaussian distribution (which, in this particular case, is the implicit as-
sumption of a classical t-test on sample accuracies). This is because a
Gaussian has infinite support, which means it inevitably places probabil-
ity mass on values below 0% and above 100% (for an alternative, see
Dixon, 2008).

A third problem, albeit not an intrinsic characteristic of the above
methods, is their typical focus on classification accuracy, which is
known to be a poor indicator of performance when classes are not
perfectly balanced. Specifically, a classifier trained on an imbalanced
dataset may acquire a bias in favor of the majority class, resulting in
an overoptimistic accuracy. This motivates the use of an alternative
performance measure, the balanced accuracy, which removes this
bias from performance evaluation.

We recently proposed a solution to the three above limitations using
Bayesian hierarchical models for mixed-effects inference on classifica-
tion performance. In particular, we introduced the beta-binomial model
and the normal-binomial model for inferring on both accuracies and
balanced accuracies (Brodersen et al., 2012a). Both models use a fully
Bayesian framework for mixed-effects inference, are based on natural
distributional assumptions, and enable more accurate inferences than
the two conventional approaches described earlier. Themodels are inde-
pendent of the type of underlying classifier, which makes them widely
applicable.

The practical utility of our models, however, has been limited by
the high computational complexity of the underlying Markov chain
Monte Carlo (MCMC) sampling algorithms required for model inver-
sion (i.e., the process of passing from a prior to a posterior distribution
over model parameters, given the data). MCMC is asymptotically
exact; but it is also exceedingly slow, especially when performing infer-
ence in a voxel-by-voxel fashion, as is common, for example, in ‘search-
light’ approaches (Kriegeskorte et al., 2006; Nandy and Cordes, 2003).

In this paper, we present a variational Bayes (VB) algorithm to
overcome this critical limitation.2 Our approach has three main fea-
tures. First, we present a mixed-effects model that explicitly respects
the hierarchical structure of the data. Second, the model can be equally
used for inference on the accuracy and the balanced accuracy. Third, our
novel variational inference scheme dramatically reduces the computa-
tional complexity (i.e., runtime) compared to our previous sampling
approach based on MCMC.

The paper is organized as follows. In the Theory section, we
present variations of our recently developed normal-binomial model
for mixed-effects inference (Brodersen et al., 2012a). These are the
univariate normal-binomial model (for inference on the accuracy) and
the twofold normal-binomial model (for inference on the balanced
accuracy).3 We then describe a novel VB algorithm for model inversion
and compare it to an MCMC sampler. In the Applications section, we
provide a set of illustrative results on both synthetic data and empirical
fMRImeasurements. Finally, in theDiscussion,we review the key charac-
teristics of our approach, compare it to similar models in other analysis
domains, and discuss its role in future classification studies.

Theory

In a hierarchical setting, a classifier is typically used to predict a
class label for each trial, where trials are further structured into sets,

for instance because they were recorded from different subjects.
The most common situation is binary classification, where class labels
are taken from {+1,−1}, denoting ‘positive’ and ‘negative’ trials,
respectively. Less common, but equally amenable to the approach
presented in this paper, are multiclass settings in which trials fall
into more than two classes (see Discussion).

The above situation raises three principal questions (cf. Brodersen et
al., 2012a). First, can one obtain successful classification at the group
level? This requires statistical inference on themean classification accura-
cy in the population from which subjects were drawn. Second, do the
subject-wise data permit classification in each individual? Considering
each subject in isolation is statistically short-sighted, since subject-
specific inference may benefit from simultaneous across-subject infer-
ence (Efron andMorris, 1971). Third, which of several possible classifica-
tion algorithms should be chosen? This is typically answered by
evaluating how well an algorithm's performance generalizes (to unseen
data). In a Bayesian framework, this expected performance is given by
the posterior predictive density of classification performance. The present
section describes a variational Bayes (VB) approach to answering these
questions (Fig. 2).

The univariate normal-binomial model for inference on the accuracy

Within each subject, classification outcomes can be summarized in
terms of the number of correctly predicted trials, k, and the total number
of trials, n. It is important to note that this summary is independent of the
type of underlying classifier. This means that the model can be applied
regardless of whether classification results were obtained using, for
instance, logistic regression, nearest-neighbor classification, a support
vector machine, or a Gaussian process classifier. Under the assumption
that trial-specific predictions are conditionally independent, k follows a
binomial distribution,

p kjπ;nð Þ ¼ Bin kjπ;nð Þ ¼ n
k

! "
πk 1−πð Þn−k ð1Þ

where π represents the latent (unobservable) accuracy of the classifier,
0 ≤ π ≤ 1. Thus, in a group study, where the classifier has been trained
and tested separately in each subject, the available data are kj and nj for
each subject j = 1…m.

Onemight be tempted to form group summaries k = ∑ j = 1
m kj and

n = ∑ j = 1
m nj and proceed to inference on π. However, using such a

pooled sample accuracywould assume zero between-subjects variabili-
ty. In other words, πwould be treated as a fixed effect in the population.
This approach would not permit inferences about the population; it
would only allow for results to be reported as a case study (Friston et
al., 1999).

Alternatively, one might summarize the data from each subject in
terms of a subject-specific sample accuracy, kj/nj. One could then ask,
using a one-tailed t-test, whether sample accuracies reflect a normal
distribution with a mean greater than what would be expected by
chance (Fig. 2a). This approach no longer treats accuracy as a fixed
effect. However, it suffers from two other problems.

First, submitting subject-specific sample accuracies to a t-test as-
sumes that accuracies, which are confined to the [0,1] interval, follow
a normal distribution, which has infinite support. This may lead to
non-interpretable results such as confidence intervals that include
accuracies above 100% (or below 0%).4

Second, even if onewere to overcome the above problem (e.g., using a
logit transform), a t-test on sample accuracies neither explicitly accounts
for within-subjects uncertainty nor for violations of homoscedasticity.
This is because it uses sample accuracies as summary statistics without
carrying forward the uncertainty associated with them (Mumford and

2 The approach proposed in this paper has been implemented as open-source soft-
ware for both MATLAB and R. The code can be downloaded from: http://www.
translationalneuromodeling.org/software/.

3 Note that the terms ‘univariate’ and ‘twofold’ are used to characterize the number
and structure of model parameters in each subject; these differences are unrelated to
the distinction between univariate and multivariate analyses.

4 Nonparametric mixed-effects approaches make it possible to overcome this limitation;
however, these are often computationally expensive and are not discussed in detail here.
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Nichols, 2009). For example, sample accuracies do not distinguish be-
tween an accuracy of 80% thatwas obtained as 80 correct out of 100 trials
(i.e., an estimate with high confidence) and the same accuracy obtained
as 8 out of 10 trials (i.e., an estimate with low confidence). Furthermore,
nodistinction regarding the confidence in the inference is beingmade be-
tween 80 correct out of 100 trials (i.e., high confidence) and 50 correct
out of 100 trials (lower confidence, since the variance of a binomial distri-
bution depends on its mean and becomes maximal at a mean of 0.5).

In order to explicitly capture bothwithin-subjects (fixed-effects) and
between-subjects (random-effects) variance components, we must in-
stead use a hierarchicalmodel inwhich separate levels account for differ-
ent sources of variability (Fig. 2b). At the level of individual subjects, for
each subject j, the number of correctly classified trials kj is modeled as

p kjjπj;nj

# $
¼ Bin kjjπj;nj

# $
ð2Þ

where πj represents the latent classification accuracy in subject j.5 Next,
at the group level, we account for variability between subjects bymodel-
ing subject-specific accuracies as drawn from a population distribution.
The natural parameter of the binomial density is ln π

1−π
. Thus, one possi-

ble parameterization is to assume accuracies to be logit-normally distrib-
uted and conditionally independent given the population parameters. In

other words, each logit accuracy ρj : ¼ σ−1 πj

# $
: ¼ ln πj

1−πj
is drawn

from a normal distribution. The inverse-sigmoid (or logit) transform
σ−1(πj) turns accuracies with support on the [0,1] interval into
log-odds with support on the real line (−∞,+∞). Thus,

p ρjjμ;λ
# $

¼ N ρjjμ;λ
# $

¼
ffiffiffiffiffiffi
λ
2π

r
exp −λ

2
ρj−μ

# $2
! "

ð3Þ

where μ and λ represent the population mean and the population
precision (i.e., inverse variance), respectively.

Since neuroimaging studies are typically confined to relatively small
sample sizes, an adequate expression of our prior ignorance about the
population parameters is critical (cf. Woolrich et al., 2004). We use
a diffuse prior on μ and λ such that the posterior will be dominated by
the data (for a validation of this prior, see Applications). A

straightforward parameterization is to use independent conjugate
densities:

p μ μ0;η0
&& '

¼ N μ μ0;η0
&& '((

ð4Þ

p λ a0; b0j Þ ¼ Ga λ a0; b0j Þ:ðð ð5Þ

In the above densities, μ0 and η0 encode the prior mean and pre-
cision of the populationmean, and a0 and b0 represent the shape and
scale parameter,6 respectively, that specify the prior distribution of
the population precision (for an alternative, see Leonard, 1972). In
summary, the univariate normal-binomial model uses a binomial
distribution at the level of individual subjects and a logit-normal
distribution at the group level (Fig. 2b).

In principle, inverting the above model immediately yields the
desired posterior density over parameters,

p μ;λ;ρjkð Þ ¼
∏m

j¼1

)
Bin kjjσ ρj

# $# $
N ρj μ;λ

&&&&

"! *
N μjμ0; η0
( '

Ga λja0; b0ð Þ

p kð Þ :

ð6Þ

In practice, however, integrating the expression in the denomina-
tor of the above expression, which provides the normalization
constant for the posterior density, is prohibitively difficult. We previ-
ously described a stochastic approximation based on MCMC algo-
rithms; however, the practical use of these algorithms was limited
by their considerable computational complexity (Brodersen et al.,
2012a). Here, we propose to invert the above model using a deter-
ministic VB approximation (Fig. 2c). This approximation is no longer
asymptotically exact, but it conveys considerable computational
advantages. The remainder of this section describes its derivation
(see Fig. 3 for a summary).

Variational inference

The difficult problem of finding the exact posterior p(μ,λ,ρ|k) can be
transformed into the easier problem of finding an approximate para-
metric posterior q(μ,λ,ρ|δ) with moments (i.e., parameters) δ. (We
will omit δ to simplify the notation.) Inference then reduces to finding

5 From now on, we will omit nj unless this introduces ambiguity.

6 Under the Gamma parameterization used here, the prior expectation of λ is
〈λ〉 = a0b0.

b Bayesian mixed-
effects inference 
(univariate normal-
binomial model)

c Variational Bayes
approximation

iterative conditional optimization
of posterior moments

a Conventional 
maximum-likelihood 
estimation

Fig. 2. Inference on classification accuracies. (a) Conventional maximum-likelihood estimation does not explicitly model within-subjects (fixed-effects) variance components and is
based on an ill-justified normality assumption. It is therefore inadequate for the statistical evaluation of classification group studies. (b) The normal-binomial model respects the
hierarchical structure of the study and makes natural distributional assumptions, thus enabling mixed-effects inference, which makes it suitable for group studies. The model uses
the sigmoid transform σ(ρj) := (1 + exp(−ρj))−1 which turns log-odds with real support (−∞,∞) into accuracies on the [0,1] interval. (b) Model inversion can be implemented
efficiently using a variational Bayes approximation to the posterior densities of the model parameters (see Fig. 3 for details).
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a density q that minimizes a measure of dissimilarity between q and p.
This can be achieved by maximizing the so-called negative free energy
F of the model, a lower-bound approximation to the log model evi-
dence, with respect to (the moments of) q. For details, see MacKay
(1995), Attias (2000), Ghahramani and Beal (2001), Bishop et al.
(2002), and Fox andRoberts (2012).Maximizing thenegative free ener-
gy minimizes the Kullback–Leibler (KL) divergence between the ap-
proximate and the true posterior, q and p:

KL qjjp½ % : ¼ ∭q μ;λ;ρð Þ ln q μ;λ;ρð Þ
p μ;λ;ρjkð Þ

dμdλdρ ð7Þ

¼ ∭q μ;λ;ρð Þln q μ;λ;ρð Þ
p k; μ;λ;ρð Þdμdλdρþ lnp kð Þ ð8Þ

⇔ ln p kð Þ ¼ KL qjjp½ % þ ln
p k; μ;λ;ρð Þ
q μ;λ;ρð Þ

+ ,

q μ;λ;ρð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:F q;kð Þ

: ð9Þ

This means that the log-model evidence ln p(k) can be expressed
as the sum of (i) the KL-divergence between the approximate and the
true posterior and (ii) the negative free energy F(q,k). Because the
KL-divergence cannot be negative, maximizing the negative free en-
ergy with respect to q minimizes the KL-divergence and thus results
in an approximate posterior that is maximally similar to the true pos-
terior. At the same time, maximizing the negative free energy pro-
vides a lower-bound approximation to the log-model evidence,
which permits Bayesian model comparison (Bishop, 2007; Penny et
al., 2004). In summary, maximizing the negative free energy F(q,k)
in Eq. (9) enables both inference on the posterior density over param-
eters and model comparison. In this paper, we are primarily interest-
ed in the posterior density.

In trying to maximize F(q,k), variational calculus tells us that

∂F q; kð Þ
∂q ¼ 0⇒q μ;λ;ρð Þ∝ exp½ ln p k; μ;λ;ρð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

negative variational energy

% ð10Þ

This means that the approximate posterior which maximizes the
negative free energy is equal to the true posterior and thus propor-
tional to the joint density over data and parameters7 (with the nor-
malization constant being given by the model evidence). In other
words, the VB approach is complete in the sense that, in the absence
of any other approximations, optimizing Fwith respect to q yields the
exact posterior density and model evidence.

Mean-field approximation

To make the optimization on the l.h.s. in Eq. (10) tractable, we as-
sume that the joint posterior over all model parameters factorizes
into specific parts. Using one density for each variable,

q μ;λ;ρð Þ ¼ q μð Þq λð Þq ρð Þ ð11Þ

the mean-field assumption turns the problem of maximizing F(q,k)
into the problem of deriving three expectations:

I1 μð Þ ¼ ln p k; μ;λ;ρð Þh iq λ;ρð Þ ð12Þ

I2 λð Þ ¼ ln p k; μ;λ;ρð Þh iq μ;ρð Þ ð13Þ

I3 ρð Þ ¼ ln p k; μ;λ;ρð Þh iq μ;λð Þ: ð14Þ

This transformation has several advantages over working with Eq.
(10) directly: it makes it more likely that we can find the exact distri-
butional form of a marginal approximate posterior (as will be the case
for μ and λ); it may make the Laplace assumption more appropriate in
those cases where we cannot identify a fixed form (as will be the case
for ρ); and it often provides us with interpretable update equations
(as will be the case, in particular, for μ and λ).

Parametric assumptions

Due to the structure of the model, the posteriors on the population
parameters μ and λ are conditionally independent given the data. In
addition, owing to the conjugacy of their priors, the posteriors on μ
and λ follow the same distributions and do not require any additional
parametric assumptions:

q μð Þ ¼ N μjμμ ;ημ
# $

ð15Þ

q λð Þ ¼ Ga λ aλ; bλj Þ:ð ð16Þ

Subject-specific (logit) accuracies q ≡ (ρ1,…,ρm) are also condi-
tionally independent given the data. This is a consequence of the
fact that the posterior for each subject only depends on its Markov
blanket, i.e., the subject's data and the population parameters (but
not the other subject's logit accuracies). This can be seen from the
fact that

q μ;λ;ρð Þ ¼ q μð Þq λð Þq ρð Þ ð17Þ

¼ q μð Þq λð Þ∏m
j¼1q ρj

# $
: ð18Þ

However, we do require a distributional assumption for the above
subject-specific posteriors to make model inversion feasible. Here, we
assume posterior subject-specific (logit) accuracies to be normally
distributed:

q ρð Þ ¼ ∏m
j¼1N ρjjμμ j

; ηρj

# $
: ð19Þ

The conditional independence in Eq. (19) differs in a subtle but
important way from the assumption of unconditional independence
that is implicit in random-effects analyses on the basis of a t-test on
subject-specific sample accuracies (see Introduction). In the case of
such t-tests, estimation in each subject only ever uses data from
that same subject. By contrast, the subject-specific posteriors in Eq.
(20) borrow strength from all observations. This can be seen from
the fact that the subject-specific posteriors q(ρ) are computed with
respect to the population posteriors q(μ) and q(λ) which are them-
selves informed by observations from the entire group (see
Eqs. (12)–(14)).

Derivation of variational densities

For each mean-field part in Eq. (11), the variational density q(⋅)
can be obtained by evaluating the variational energy I(⋅), as described
next. The first variational energy concerns the posterior density over
the population mean μ. It is given by

I1 μð Þ ¼ ln p k; μ;λ;ρð Þh iq λ;ρð Þ ð20Þ

¼ ln p kjρð Þh iq λ;ρð Þ þ ln p ρjμ;λð Þh iq λ;ρð Þ þ ln p μ;λð Þh iq λ;ρð Þ ð21Þ

¼ ∑m
j¼1 lnN ρjjμ;λ

# $D E

q λ;ρð Þ
þ ln N μjμ0; η0

( '
Ga λja0; b0ð Þ

( '. /
q λ;ρð Þ þ c ð22Þ

7 The dependence of the joint probability in Eq. (10) on the prior (μ0,η0,a0,b0) has
been omitted for brevity.

349K.H. Brodersen et al. / NeuroImage 76 (2013) 345–361
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2
ln λ−1
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ln 2π−λ

2
ρj−μ

# $2
+ ,

q λ;ρð Þ

þ 1
2
ln η0−

η0
2

μ−μ0ð Þ2
D E

q λ;ρð Þ
þ c ð23Þ
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j¼1−

1
2

λ ρ2
j −2λρjμ þ λμ2

D E

q λ;ρð Þ
−η0

2
μ−μ0ð Þ2 þ c ð24Þ

¼ −1
2
∑m

j¼1 −2 μμρj
þ μ2

h i
aλbλ þ μ η0 μ0−

1
2
μ

# $
þ c ð25Þ

¼ μ aλ bλ −1
2
mμ þ∑m

j¼1μρj

! "
þ μ η0 μ0−

1
2
μ

! "
þ c ð26Þ

where the symbol c is used for any expression that is constant with
respect to μ.

In principle, we could proceed by optimizing the sufficient statis-
tics of the approximate posterior. Instead, we only optimize the
mean and equate the variance to the observed information, i.e., the
negative curvature at the mode. This procedure is known as the La-
place approximation (or normal approximation) and implies that the
negative free energy is a function simply of the posterior means (as
opposed to a function of the posterior means and covariances). It is
a local, rather than a global, optimization solution.

Conveniently, the Laplace approximation is typically more accu-
rate for the conditional posterior (of one parameter given the others)
than for the full posterior (of all parameters). In addition, it is compu-
tationally efficient (see Discussion) and often gives rise to interpret-
able update equations (see below).

Setting the first derivative to zero yields an analytical expression
for the maximum,

dI1 μð Þ
dμ

¼ −μ η0 þmaλbλ
( '

þ μ0η0 þ aλbλ∑
m
j¼1μρj

¼ 0 ð27Þ

⇒μ' ¼
μ0η0 þ aλbλ∑

m
j¼1μρj

η0 þmaλbλ
: ð28Þ

Having found the mode of the approximate posterior, we can use a
second-order Taylor expansion to obtain closed-form approximations
for its moments:

μμ ¼ μ' and ð29Þ

ημ ¼ −dI21 μð Þ
dμ2

&&&&
μ¼μ'

¼ η0 þmaλbλ: ð30Þ

Thus, the posterior density of the population mean logit accuracy
under our mean-field and Gaussian approximations is N(μ|μμ,ημ).

The use of a Laplace approximation, as we do here, often leads to in-
terpretable update equations. In Eq. (30), for example, we can see that
the posterior precision of the population mean (ημ) is simply the sum
of the prior precision (η0) and themean of the posterior population pre-
cision (aλbλ), correctly weighted by the number of subjects m.

Based on the above approximation for the posterior logit accuracy,
we can see that the posterior mean accuracy itself, ξ : = σ(μ), is
logit-normally distributed and can be expressed in closed form,

logitN ξjμμ ; ημ
# $

¼ 1
ξ 1−ξð Þ

ffiffiffiffiffiffi
ημ
2π

r
exp −

ημ
2

σ−1 ξð Þ−μμ

# $2
! "

ð31Þ

conditional maximization until convergence

(negative) free energy

Newton-
Raphson

variational algorithm with Laplace approximations

parametric assumptions

mean-field approximation

variational inference

Fig. 3. Variational inversion of the univariate normal-binomial model. This schematic summarizes the individual steps involved in the variational approach to the inversion of the
univariate normal-binomial model, as described in the main text (see Theory).
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where μμ and ημ represent the posterior mean and precision, respec-
tively, of the population mean logit accuracy.

The second variational energy concerns the population precision λ
and is given by

I2 λð Þ ¼ ln p k; μ;λ;ρð Þh iq μ;ρð Þ ð32Þ

¼ m
2

ln λ−λ
2
∑m

j¼1 μρj
−μμ

# $2
þ η−1

ρj
þ η−1

μ

! "
þ a0−1ð Þ ln λ− λ

b0
þ c

ð33Þ

where c represents a term that is constant with respect to λ. The
above expression already has the form of a log-Gamma distribution
with parameters

aλ ¼ a0 þ
1
2
m and ð34Þ

bλ ¼ 1
b0

þ 1
2
∑m

j¼1 μρj
−μμ

# $2
þ η−1

ρj
þ η−1

μ

! "! "−1
: ð35Þ

From this we can see that the shape parameter aλ is a weighted sum
of prior shape a0 and datam. When viewing the second parameter as a
‘rate’ coefficient bλ−1 (as opposed to a shape coefficient bλ), it becomes
clear that the posterior rate really is a weighted sum of: the prior rate
(b0−1); the dispersion of subject-specific means; their variances (η−1

ρj
);

and our uncertainty about the population mean (ημ−1).
The variational energy of the third partition concerns the model

parameters representing subject-specific latent accuracies. This ener-
gy is given by

I3 ρð Þ ¼ ln p k; μ;λ;ρð Þh iq μ;λð Þ ð36Þ

¼ ∑m
j¼1 kj lnσ ρj

# $
þ nj−kj
# $

ln 1−σ ρj

# $# $
−1

2
aλbλ ρj−μμ

# $2
! "

þ c: ð37Þ

Since an analytical expression for the maximum of this energy
does not exist, we resort to an iterative Newton–Raphson scheme
based on a quadratic Taylor-series approximation to the variational
energy I3(ρ). For this, we begin by considering the Jacobian

dI3 ρð Þ
dρ

! "

j
¼ ∂I3 ρð Þ

∂ρj
¼ kj−njσ ρj

# $
þ aλbλ μμ−ρ

# $
ð38Þ

and the Hessian

d2I3 ρð Þ
dρ2

 !

jk

¼ ∂2I3 ρð Þ
∂ρj∂ρk

¼ −δjk njσ ρj

# $
1−σ ρj

# $# $
þ aλbλ

# $
ð39Þ

where the Kronecker delta operator δjk is 1 if j = k and 0 otherwise.
As noted before, the absence of off-diagonal elements in the Hessian
is not based on an assumption of conditional independence of
subject-specific posteriors; it is a consequence of the mean-field sep-
aration in Eq. (11). Each GN iteration performs the update

ρ' ← ρ'− d2I3 ρð Þ
dρ2

&&&&&
ρ¼ρ'

2

4

3

5
−1

( dI3 ρð Þ
dρ

&&&&&
ρ¼ρ'

ð40Þ

until the vector ρ* converges, i.e., ‖ρ⁎current − ρ⁎previous‖2 b 10−3. Using
thismaximum,we can use a second-order Taylor expansion (i.e., the La-
place approximation) to set themoments of the approximate posterior:

μρ ¼ ρ' and ð41Þ

ηρ ¼ −d2I3 ρð Þ
dρ2

&&&&&
ρ¼ρ'

: ð42Þ

Variational algorithm and free energy

The expressions for the three variational energies depend on one
another. This circularity can be resolved by iterating over the expres-
sions sequentially and updating the moments of each approximate
marginal given the current moments of the other marginals. This ap-
proach of conditional maximization (or stepwise ascent) maximizes
the (negative) free energy F ≡ F(q,k) and leads to approximate mar-
ginals that are maximally similar to the exact marginals.

The free energy itself can be expressed as the sum of the expected
log-joint density (over the data and the model parameters) and the
Shannon entropy of the approximate posterior:

F ¼ ln p k; μ;λ;ρð Þh iq|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expected log joint

þ − ln q μ;λ;ρð Þh iq|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
entropy H q½ %

: ð43Þ

We begin by considering the expectation of the log joint w.r.t. the
variational posterior:

ln p k; μ;λ;ρð Þh iq ¼∑m
j¼1 ln Bin kjjσ ρj

# $# $
þ lnN ρjjμ;λ

# $D E

q μð Þ

+ ,

q λð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡I ρjð Þ

* +

q ρjð Þ

þ lnN μjμ0;η0
( '. /

q þ ln Ga λja0; b0ð Þh iq:

ð44Þ

The above expression contains the variational energy of ρj,

I ρj

# $
¼ ln Bin kjjσ ρj

# $# $
þ 1
2

ψ aλð Þ þ ln bλð Þ

−1
2
ln 2π−1

2
aλbλ ρj−μμ

# $2
þ η−1

μ

! " ð45Þ

where ψ(⋅) is the digamma function. I(ρj) is the only term in Eq. (44)
whose expectation [w.r.t. q(ρj)] cannot be derived analytically. Under
the Laplace approximation, however, it is replaced by a second-order
Taylor expansion around the variational posterior mode μρj

,

I ρj

# $
≈ I μρj

# $
þ I ′ μρj

# $
ρj−μρj

# $
þ 1
2
I ″ μρj

# $
ρj−μρj

# $2
: ð46Þ

This allows us to approximate the expectation of I(ρj) by

I ρj

# $D E

q ρjð Þ
≈ I μρj

# $D E

q ρjð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
I μρj

# $

þI ′ μρj

# $
ρj−μρj

D E

q ρjð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0

þ1
2
I ″ μρj

# $

|fflfflfflffl{zfflfflfflffl}
−ηρj

ρj−μρj

# $2
+ ,

q ρjð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
η−1
ρj

ð47Þ

¼ I μρj

# $
−1

2
ð48Þ

where the equality I″ μρj

# $
¼ −ηρj

follows directly from Eq. (42).
Hence, the expected log joint is:

ln p k; μ;λ;ρð Þh iq≈
1
2
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η0
2π

−η0
2

μμ−μ0

# $2
þ η−1

μ

! "zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ln N μjμ0 ;η0ð Þh iq

− ln Γ a0ð Þ−a0 ln b0 þ a0−1ð Þ ψ aλð Þ þ ln bλð Þ− aλbλ
b0
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*

ð49Þ
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The second term of the free energy in Eq. (43) is the entropy H[q]
of the variational posterior:

− ln q μ;λ;ρð Þh iq ¼
1
2
ln

2πe
ημ

zfflfflfflfflffl}|fflfflfflfflffl{
H N μjμμ ;ημð Þ½ %

þ
Xm

j¼1

1
2
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2πe
ηρj

zfflfflfflfflffl}|fflfflfflfflffl{
H N ρj jμρj

;ηρj

# $h i

þ aλ þ lnbλ þ lnΓ aλð Þ þ 1−aλð Þψ aλð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{H Ga λ aλ ;bλj Þð %½
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Substituting Eqs. (49) and (50) into Eq. (43) yields an expression
for the free energy,

F ≈ 1
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The availability of the above approximation to the free energy
leads to a straightforward variational algorithm. The algorithm is ini-
tialized by setting the moments of all approximate posteriors to the
moments of their respective priors. It terminates when

Fcurrent − Fprevious b 10−3 ð52Þ

i.e., when the free energy has converged. This criterion typically leads
to the same inference as a criterion based on the parameter estimates
themselves, e.g.,

θcurrent − θprevious
000

000
2
b 10−3 ð53Þ

where convergence of θ ≡ μμ ;ημ ; aλ; bλ; μρ1
;…; μρm

; ηρ1
;…;ηρm

# $
is

expressed through a bound on their (squared) ‘2-norm. However,
computing (an approximation to) the free energy itself has the addi-
tional advantage that it provides an approximation to the log model
evidence (see Eqs. (9) and (43)), which permits Bayesian model se-
lection (for an example, see Brodersen et al., 2012a).

MCMC sampling

The variational Bayes scheme presented above is computationally
highly efficient; it typically converges after just a few iterations. How-
ever, its results are only exact to the extent to which its distributional
assumptions are justified. To validate these assumptions, we com-
pared VB to an asymptotically exact stochastic approach, i.e., Markov
chain Monte Carlo (MCMC), which is computationally much more ex-
pensive than variational Bayes but exact in the limit of infinite runtime.

In the Supplemental Material, we describe a Gibbs sampler for
inverting the univariate normal-binomial model introduced above.
This algorithm is analogous to the one we previously introduced for
the inversion of the bivariate normal-binomial model in Brodersen et
al. (2012a). It proceeds by cycling overmodel parameters, drawing sam-
ples from their full-conditional distributions, until the desired number
of samples (e.g., 106) has been generated (see Supplemental Material).

Unlike VB, which was based on amean-field assumption, the posteri-
or obtained through MCMC retains any potential conditional dependen-
cies among the model parameters. The algorithm is computationally
burdensome; but it canbe used to validate the distributional assumptions
underlying variational Bayes (see Applications).

The twofold normal-binomial model for inference on the balanced
accuracy

Seemingly strong classification accuracies can be trivially obtained
on datasets consisting of different numbers of representatives from
either class. For instance, a classifier might assign every example to
the majority class and thus achieve an accuracy equal to the propor-
tion of test cases belonging to the majority class. Thus, the use of clas-
sification accuracy as a performance measure may easily lead to
optimistic inferences (Akbani et al., 2004; Brodersen et al., 2010a,
2012a; Chawla et al., 2002; Japkowicz and Stephen, 2002).

This has motivated the use of a different performance measure: the
balanced accuracy, defined as the arithmetic mean of sensitivity and
specificity, or the average accuracy obtained on either class,

φ : ¼ 1
2

πþ þ π−
# $

ð54Þ

where π+ : = σ(μ+) and π− : = σ(μ−) denote the (population) classi-
fication accuracies on positive and negative trials, respectively.8 The bal-
anced accuracy reduces to the conventional accuracy whenever the
classifier performed equally well on either class; and it drops to chance
when the classifier performed well purely because it exploited an
existing class imbalance. We will revisit the conceptual differences be-
tween accuracies and balanced accuracies in the Discussion. In this sec-
tion, we show how the univariate normal-binomial model presented
above can be easily extended to allow for inference on the balanced
accuracy.

We have previously explored different ways of constructing
models for inference on the balanced accuracy (Brodersen et al.,
2012a). Here, we infer on the balanced accuracy by duplicating our
generative model for accuracies and applying it separately to data
from the two classes. This constitutes the twofold normal-binomial
model (Fig. 4).

To infer on the balanced accuracy, we separately consider the
number of correctly classified positive trials kj+ and the number of
correctly predicted negative trials kj− for each subject j = 1…m. We
next describe the true accuracies within each subject as πj+ and πj−.
The population parameters μ+, λ+ and μ−, λ− then represent the
population accuracies on positive and negative trials, respectively.

Inverting the model proceeds by inverting its two parts indepen-
dently. However, in contrast to the inversion of the univariate

Bayesian mixed-effects inference
 on the balanced accuracy 
(twofold normal-binomial model) 

Fig. 4. Inference on balanced accuracies. The univariate normal-binomial model (Fig. 2)
can be easily extended to enable inference on the balanced accuracy. Specifically, the
model is inverted separately for classification outcomes obtained on positive and neg-
ative trials. The resulting posteriors are then recombined (see main text).

8 The extension to multiclass problems is considered in the Discussion.
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normal-binomial model, we are no longer interested in the posterior
densities over the population mean accuracies μ+ and μ− themselves.
Rather, we wish to obtain the posterior density of the balanced accura-
cy,

p ϕjkþ; k−
# $

¼ p
1
2

σ μþ
# $

þ σ μ−ð Þ
# $

kþ; k−
&&&

$
:

!
ð55Þ

Unlike the population mean accuracy (Eq. (29)), which was
logit-normally distributed, the posteriormean of the population balanced
accuracy can no longer be expressed in closed form. The same applies to
subject-specific posterior balanced accuracies. We therefore approxi-
mate the respective integrals by (one-dimensional) numerical integra-
tion. If we were interested in the sum of the two class-specific
accuracies, s : = σ(μ+) + σ(μ−), we would consider the convolution
of the distributions for σ(μ+) and σ(μ−),

p s kþ; k−
&&&

$
¼ ∫s

0pσ μþð Þ s−z kþ
&&&

$
pσ μ−ð Þ z k−j Þdzð

##
ð56Þ

wherepσ μþð Þ andpσ μ−ð Þ represent the individual posterior distributions of
the population accuracy on positive and negative trials, respectively. In
the same spirit, the modified convolution

p ϕjkþ; k−
# $

¼ ∫2φ
0 pσ μþð Þ 2ϕ−zjkþ

# $
pσ μ−ð Þ z k−j Þdzð ð57Þ

yields the posterior distribution of the arithmetic mean of two
class-specific accuracies, i.e., the balanced accuracy.

Applications

This section illustrates the sort of inferences that can be made using
VB in a classification study of a group of subjects.We begin by consider-
ing synthetic classification outcomes to evaluate the consistency of our
approach and illustrate its link to classical fixed-effects and random-
effects analyses. We then apply our approach to empirical fMRI data
obtained from a trial-by-trial classification analysis.

Application to synthetic data

We examined the statistical properties of our approach in two
typical settings: (i) a larger simulated group of subjects with many
trials each; and (ii) a small group of subjects with few trials each,
including missing trials. Before we turn to the results of these simula-
tions, wewill pick one simulated dataset from either setting to illustrate
inferences supported by our model (Fig. 5).

Thefirst synthetic setting is based on a group of 30 subjectswith 200
trials each (i.e., 100 trials in each class). Outcomes were generated
using the univariate normal-binomial model with a population mean
(logit accuracy) of μ = 1.1 (corresponding to a population mean accu-
racy of 71%) and a relatively high logit population precision of λ = 4
(corresponding to a population accuracy standard deviation of 9.3%;
Fig. 5a). MCMC results were based on 100,000 samples, obtained from
8 parallel chains (see Supplemental Material).

In inverting the model, the parameter of primary interest is μ, the
(logit) population mean accuracy. Our simulation showed a typical
result in which the posterior distribution of the population mean was
sharply peaked around the true value, with its shape virtually indistin-
guishable from the corresponding MCMC result (Fig. 5b). In practice,
a good way of summarizing the posterior is to report a central 95% pos-
terior probability interval (or Bayesian credible interval). Although this
interval is conceptually different from a classical (frequentist) 95%
confidence interval, in this particular case the two intervals agreed
very closely (Fig. 5c), which is typical in the context of a large sample
size. In contrast, fixed-effects intervals were overconfident when

based on the pooled sample accuracy and underconfident when based
on the average sample accuracy (Fig. 5c).

Another informative way of summarizing the posterior population
mean is to report the posterior probability mass p that is below chance
(e.g., 0.5 for binary classification). We refer to this probability as the
(posterior) infraliminal probability of the classifier (cf. Brodersen et al.,
2012a). Compared with a classical p-value, it has a deceptively similar,
butmore natural, interpretation. Rather than representing the frequency
of observing the observed outcome (or a more extreme outcome) under
the ‘null’ hypothesis of a classifier operating at or below chance (classical
p-value), the infraliminal probability represents our posterior belief that
the classifier does not perform better than chance. In the above simula-
tion, we obtained p ≈ 10−10.

Wenext considered the true subject-specific accuracies and compared
them (i) with conventional sample accuracies and (ii) with VB posterior
means (Fig. 5e). This comparison highlighted one of the principal
features of hierarchical models, that is, their shrinkage effect. Because of
the limited numbers of trials, sample accuracies exhibited a larger vari-
ance than ground truth; accordingly, the posterior means, which were
informed by data from the entire group, appropriately compensated for
this effect by shrinking to the group mean. This effect is also known as
regression to the mean and dates back to works as early as Galton's law
of ‘regression towardsmediocrity’ (Galton, 1886). It is obtained naturally
in a hierarchical model and, as wewill see below, leads to systematically
more accurate posterior inferences at the single-subject level.

We repeated the above analysis on a sample dataset from a second
simulation setting. This setting was designed to represent the exam-
ple of a small group with varying numbers of trials across subjects.9

Such a scenario is important to consider because it occurs in real-
world applications whenever the number of trials eligible for subse-
quent classification is not entirely under experimental control. Vary-
ing numbers of trials also occur, for example, in clinical diagnostics
of diseases like epilepsy where one may have different numbers of
observations per patient. Classification outcomes were generated
using the univariate normal-binomial model with a population
mean logit accuracy of μ = 2.2 and a low logit population precision
of λ = 1; the corresponding population mean accuracy was 87%,
with a population standard deviation of 11.2% (Fig. 5f).

Comparing the resulting posteriors (Figs. 5g–j) to those obtained
on the first dataset, several differences are worth noting. Concerning
the population parameters (Figs. 5g,i), all estimates remained in
close agreement with ground truth; at the same time, minor discrep-
ancies began to arise between variational and MCMC approximations,
with the variational results slightly too precise (Figs. 5g,i). This can be
seen best from the credible intervals (Fig. 5h, black). By comparison,
an example of inappropriate inference can be seen in the frequentist
confidence interval for the population accuracy, which does not
only exhibit an optimistic shift towards higher performance but also
includes accuracies above 100% (Fig. 5h, red).

Another typical consequence of a small dataset with variable trial
numbers can be seen in the shrinkage of subject-specific inferences
(Fig. 5j). In comparison to the first setting, there are fewer trials per
subject, and so the shrinkage effect is stronger. In addition, subjects
with fewer trials (red) are shrunk more than those with more trials
(blue). Thus, the order between sample accuracies and posterior
means has changed, as indicated by crossing black lines. Restoring
the correct order of subjects can become important, for example,
when one wishes to relate subject-specific accuracies to independent
subject-specific characteristics, such as behavioral, demographic, or
genetic information.

The primary advantage of VB over sampling algorithms is its compu-
tational efficiency. To illustrate this, we examined the computational
load required to invert the normal-binomial model on the dataset

9 Note that the heteroscedasticity in this dataset results both from the fact that sub-
jects have different numbers of trials and from their different sample accuracies.
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Fig. 5. Application to simulated data. Two simple synthetic datasets illustrate the sort of inferences that can be obtained using a mixed-effects model. (a) Simulated data, showing the number of trials in each subject (gray) and the number of
correct predictions (black). (b) Resulting posterior density of the population mean accuracy when using variational Bayes or MCMC. (c) Posterior densities can be summarized in terms of central 95% posterior intervals. Here, the two Bayesian
intervals (blue/black) are compared with a frequentist random-effects 95% confidence interval andwith fixed-effects intervals based on the pooled and the averaged sample accuracy. (d) Posterior densities of the population precision (inverse var-
iance). (e) The benefits of a mixed-effects approach in subject-specific inference can be visualized (cf. Brodersen et al., 2012a) by contrasting the increase in dispersion (as we move from ground truth to sample accuracies) with the corresponding
decrease in dispersion (as wemove from sample accuracies to posterior means). This effect is a consequence of the hierarchical structure of the model, and it yields better estimates of ground truth (cf. Figs. 7d,h). Notably, shrinkingmay change the
order of subjects (when sorted by accuracy) since its extent depends on the subject-specific (first-level) posterior uncertainty. Note that the x-axis does not represent any quantity by itself but simply serves to space out the three groups of data points
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number of subjects and a smaller and more heterogeneous number of trials in each subject. The smaller size of the dataset enhances the merits of mixed-effects inference over conventional approaches and increases the shrinkage effect in
subject-specific accuracies.
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shown in Fig. 5a. Rather than measuring computation time (which is
platform-dependent), we considered the number of floating-point
operations (FLOPs), which we related to the absolute error of the in-
ferred posterior mean of the mean population accuracy (in percentage
points; Fig. 6). We found that MCMC used 4000 times more arithmetic
operations to achieve an estimate that was better than VB by no more
than 0.13 percentage points.

Application to a larger number of simulations

Moving beyond the single case examined above, we replicated our
analysis many times while varying the true population mean accuracy
between 0.5 and 0.9. For each point, we ran 200 simulations. This
allowed us to examine the properties of our approach froma frequentist
perspective (Fig. 7).

In the first setting (Fig. 7, top row), each simulation was based on
synthetic classification outcomes from 30 subjects with 200 trials each,
as described in the previous section. One instance of these simulations
is shown as an example (Fig. 7a); all subsequent plots are based on
200 independent datasets generated in the same way.

We began by asking, in each simulation, whether the population
mean accuracy was above chance (0.5). We answered this question by
computing p-values using the following five methods: (i) fixed-effects
inference based on a binomial test on the pooled sample accuracy
(orange); (ii) fixed-effects inference based on a binomial test on the
average sample accuracy (violet); (iii) mixed-effects inference using
VB (solid black); (iv) mixed-effects inference using an MCMC sampler
with 100,000 samples (dotted black); and (v) random-effects inference
using a t-test on subject-specific sample accuracies (red).

An important aspect of inferential conclusions (whether frequentist
or Bayesian under a diffuse prior) is their validitywith respect to a given
test size. For example, when using a test size of α = 0.05, we expect
the test statistic to be at or beyond the corresponding critical value
for the ‘null’ hypothesis (of the classification accuracy to be at or
below the level of chance) in precisely 5% of all simulations. We thus
plotted the empirical specificity, i.e., the fraction of false rejections, as a
function of test size (Fig. 7b). For any method to be a valid test,
p-values should be uniformly distributed on the [0, 1] interval under
the ‘null’; thus, the empirical cumulative distribution function should
approximate the main diagonal.
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Fig. 6. Estimation error and computational complexity. VB andMCMCdiffer in theway es-
timation error and computational complexity are traded off. The plot shows estimation
error in terms of the absolute difference of the posterior mean of the populationmean ac-
curacy in percentage points (y-axis). Computational complexity is shown in terms of the
number of floating point operations (FLOPs) consumed. VB converged after 370,000
FLOPs (iterative update b 10−6) to a posterior mean of the population mean accuracy of
73.5%. Given a true population mean of 73.9%, the estimation error of VB was −0.4 per-
centage points. In contrast, MCMC used up 1.47 × 109 FLOPs to draw 10,000 samples
(excluding 100 burn-in samples). Its posterior mean estimate was 73.6%, implying an
error of −0.26 percentage points. Thus, while MCMC ultimately achieved a marginally
lower error, VB was computationally more efficient by more than 3 orders of magnitude.
It should be noted that the plot uses log–log axes for readability; the difference between
the two algorithms would be visually even more striking on a linear scale.
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Fig. 7. Application to a larger number of simulations. (a) One example of 200 simulations of synthetic classification outcomes (generated using the same model as in Fig. 5a).
(b) Specificity of competing methods for testing whether the population mean accuracy is greater than chance, given a true population mean of 0.5. (c) Power curve, testing whether
the populationmean accuracy is greater than chance, given different true population mean accuracies. (d) Comparison of accuracy of subject-specific estimates, using different inference
methods. (e) Example of a smaller dataset (sampled from the same model as in Fig. 5f). (f–h) Same analyses as above, but based on smaller experiments.
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As can be seen fromFig. 7b, thefirstmethod violates this requirement
(fixed-effects analysis, orange). It pools the data across all subjects; as a
result, above-chance performance is concluded too frequently at small
test sizes and not concluded frequently enough at larger test sizes. In
other words, a binomial test on the pooled sample accuracy provides
invalid inference on the population mean accuracy.

A second important property of inference schemes is their sensitivity
or statistical power (Fig. 7c). An ideal test (falsely) rejects the null with a
probability of αwhen the null is true, and always (correctly) rejects the
null when it is false. In the presence of observation noise, such a test is
only guaranteed to exist in the limit of an infinite amount of data.
Thus, given a finite dataset, we can compare the power of different
inference methods by examining how quickly their rejection rates rise
once the null is no longer true. Using a test size of α = 0.05, we carried
out 200 simulations for each level of true population mean accuracy
(0.5, 0.6, …, 0.9) and plotted empirical rejection rates. The figure
shows, as expected, that a Binomial test on the pooled sample accuracy
is an invalid test, in the sense that it rejects the null hypothesis too fre-
quently when it is true. This effect will become even clearer when using
a smaller dataset (see below).10

Finally, we examined the performance of our VB algorithm for
estimating subject-specific accuracies (Fig. 7d). We compared three esti-
mators: (i) posterior means of σ(ρj) using VB; (ii) posterior means σ(ρj)
using MCMC; and (iii) sample accuracies, i.e., individual maximum-
likelihood estimates. The figure shows that posterior estimates based
on a mixed-effects model led to a slightly smaller estimation error than
sample accuracies. This effect was small in this scenario but became
substantial when considering a smaller dataset, as described next.

In the second setting (Fig. 7, bottom row), we carried out the same
analyses as above, but based on small datasets of just 8 subjects
with different numbers of trials (Fig. 7e). Regarding test specificity,
as before, we found fixed-effects inference to yield highly over-
optimistic inferences at low test sizes (Fig. 7f).

The same picture emerged when considering sensitivities (Fig. 7g).
Fixed-effects inference on the pooled sample accuracy yielded over-
confident results; it systematically rejected the null hypothesis too eas-
ily. A conventional t-test on subject-specific sample accuracies provided
a valid test, with nomore false positives under the null than prescribed
by the test size (red). However, it was outperformed by a mixed-effects
approach (black), whose rejection probability rises more quickly when

the null is no longer true, thus offering greater statistical power than the
t-test.

Finally, in this setting of a small group size and few trials, subject-
specific inference benefitted substantially from a mixed-effects model
(Fig. 7h). This is due to the fact that subject-specific posteriors are
informed by data from the entire group, whereas sample accuracies
are only based on the data from an individual subject.

Accuracies versus balanced accuracies

As described above, the classification accuracy of an algorithm
(obtained on an independent test set or through cross-validation) can
be a misleading measure of generalization ability when the underlying
data are not perfectly balanced. To resolve this problem, we use a
straightforward extension of our model, the twofold normal-binomial
model (Fig. 4), that enables inference on balanced accuracies. To illus-
trate the differences between the two quantities, we revisited, using
our new VB algorithm, an analysis from a previous study in which we
had generated an imbalanced synthetic dataset and used a linear
support vector machine (SVM) for classification (Fig. 8; for details, see
Brodersen et al., 2012a).

We observed that, as expected, the class imbalance caused the clas-
sifier to acquire a bias in favor of the majority class. This can be seen
from the raw classificationoutcomes inwhichmanymore positive trials
(green) than negative trials (red) were classified correctly, relative to
their respective prevalence in the data (Fig. 8a). The bias is reflected
accordingly by the estimated bivariate density of class-specific classifi-
cation accuracies, in which the majority class consistently performed
well whereas the accuracy on the minority class varied strongly, cover-
ing virtually the entire [0, 1] range (Fig. 8b). In this setting, we found
that the twofold normal-binomial model of the balanced accuracy pro-
vided an excellent estimate of the true balanced accuracy under which
the data had been generated (dotted green line in Fig. 8c). In stark con-
trast, using the single normal-binomialmodel to infer on the population
accuracy resulted in estimates that were considerably too optimistic
and therefore misleading.

Application to fMRI data

To demonstrate the practical applicability of our VB method for
mixed-effects inference, we analyzed data from an fMRI experiment
involving 16 volunteers who participated in a simple decision-making
task (Fig. 9). During the experiment, subjects had to choose, on each
trial, between two options that were presented on the screen. Decisions

10 The above simulation could also be used for a power analysis to assess what pop-
ulation mean accuracy would be required to reach a particular probability of obtaining
a positive (above-chance) finding.
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Fig. 8. Imbalanceddata and the balanced accuracy. (a) In analogywith Fig. 7a, the panel shows a set of classification outcomes obtainedby applying a linear support vectormachine (SVM)
to synthetic data, using 5-fold cross-validation. Individual bars represent, for each subject, the number of correctly classified positive (green) and negative (red) trials, as well as the
respective total number of trials (gray). (b) Sample accuracies on positive (true positive rate, TPR) and negative classes (true negative rate, TNR), based on the classification outcomes
shown in (a). The underlying true population distribution is shown in terms of a bivariate Gaussian kernel density estimate (contour lines). Sample accuracies can be thought of as
being drawn from this two-dimensional density. The plot shows that the population accuracy is high on positive trials and low on negative trials; the imbalance in the data has led
the SVM to acquire a bias in favor of the majority class. (c) As an example of an inference that can be obtained using the approach presented in this paper, the last panel shows central
95% posterior probability intervals of the population mean accuracy and the balanced accuracy. The plot shows that inference on the accuracy is misleading as it must be interpreted
in relation to an implicit baseline that is different from 0.5. By contrast, the balanced accuracy interval provides a sharply peaked estimate of the true balanced accuracy; its baseline is 0.5.
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were indicated by button press (left/right index finger). Details on the
underlying experimental design, data acquisition, and preprocessing
can be found elsewhere (Behrens et al., 2007). Here, we aimed to de-
code (i.e., classify) from fMRI measurements which option had been
chosen on each trial. Because different choices were associated with
different buttons, we expected to find highly discriminative activity in
the primary motor cortex.

Separately for each subject, a general linear model (Friston et al.,
1995) was used to create a set of parameter images representing
trial-specific estimates of evoked brain activity in each volume
element. These images entered a linear support vector machine
(SVM), as implemented by Chang and Lin (2011), that was trained
and tested using 5-fold cross-validation. Comparing predicted to
actual choices resulted in 120 classification outcomes for each of the
16 subjects (Fig. 9a).

Using the univariate normal-binomial model for inference on the
population mean accuracy, we obtained clear evidence (infraliminal
probability p b 0.001) that the classifier was operating above chance
(Fig. 9b). The variational posterior population mean balanced accuracy

(posterior mean 73.7%; Fig. 9c) agreed closely with an MCMC-based
posterior (73.5%; not shown). Inference on subject-specific balanced
accuracies yielded fairly precise posterior intervals whose shrinkage to
the population, due to the large number of trials per subject, was only
small (Fig. 9d).

The overall computation time for the above VB inferences was
approximately 7 ms on a 2.53 GHz Intel Xeon E5540 processor. This
speedup in comparison to previous MCMC algorithmsmakes it feasible
to construct whole-brain maps of above-chance accuracies. We
illustrate this using a searchlight classification analysis (Kriegeskorte
et al., 2006; Nandy and Cordes, 2003). In this analysis, we passed a
sphere (radius 6 mm) across the brain. At each location, we trained
and tested a linear SVM using 5-fold cross-validation. We associated
the voxel at the center of the current spherewith the number of correct
predictions (i.e., the vector k1:16 ∈ N16).We then used ourVB algorithm
to compute a whole-brain posterior accuracy map (PAM; Fig. 10).
Comprising 220,000 voxels, the map took no more than 7 min 18 s to
complete. The map shows the posterior population mean accuracy in
voxels with an infraliminal probability of less than 0.001. Thus, it
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Fig. 9. Application to empirical fMRI data: overall classification performance. (a) Classification outcomes obtained by applying a linear SVM to trial-wise fMRI data from a decision-making task.
(b) Posterior population mean accuracy, inferred on using variational Bayes. (c) Posterior population precision. (d) Subject-specific posterior inferences. The plot contrasts sample accuracies
with central 95% posterior probability intervals. In this case, the shrinkage effect (discrepancy between blue dots and black circles) is diminished by the large number of trials per subject.

(a) Conventional sample accuracy map (SAM) thresholded at p < 0.001 (t-tests, unc.)

(b) Bayesian posterior accuracy map (PAM) thresholded at p (π > 0.5) > 0.999 (unc.)

Fig. 10. Application to empirical fMRI data: posterior accuracy map. (a) A conventional sample accuracy map (SAM) highlights regions in which a one-tailed t-test on subject-specific
sample accuracies yielded p b 0.001 (uncorrected). (b) Using the VB algorithm presented in this paper, we can instead create a posterior accuracy map (PAM), which highlights those
regions in which the posterior accuracy of the classification algorithm operating above chance is greater than 99.9%.
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highlights regionswith a posterior probability of the classifier operating
above chance at the group level that is at least 99.9%.

For comparison, we contrast this result with a conventional sample
accuracy map (SAM), thresholded at p b 0.001 (uncorrected). While
the results are, overall, rather similar, the SAM shows several scattered
small clusters and isolated voxels in white matter and non-motor
regions that the PAM does not display.

Discussion

In this paper, we have introduced a VB algorithm for highly efficient
inversion of a hierarchical Bayesian normal-binomial model which
enables full mixed-effects inference on classification accuracy in group
studies. Owing to its hierarchical structure, the model reflects both
within-subjects and between-subjects variance components and
exploits the available group data to optimally constrain inference in
individual subjects. The ensuing shrinkage effects yield more accurate
subject-specific estimates than those obtained through non-hierarchical
models. The proposed model follows a natural parameterization and
can be inverted in a fully Bayesian fashion. It is independent of the type
of underlying classifier, and it supports inference both on the accuracy
and on the balanced accuracy; the latter is the preferred performance
measure when the data are not perfectly balanced.

In previous work, we have successfully established sampling
(MCMC) approaches to Bayesian mixed-effects inference on classifi-
cation accuracy at the group level (Brodersen et al., 2012a). Extending
this work, the critical contribution of the present paper is the deriva-
tion and validation of a VB method for model inversion. Our new
approach drastically reduces the computational complexity of previous
sampling schemes (by more than 3 orders of magnitude; cf. Fig. 6)
while maintaining comparable accuracy.

The parameterization used in the presentmanuscript differs slightly
from that introduced in our previous implementations (Brodersen et al.,
2012a). Specifically, we are now modeling the population distribution
of subject-specific accuracies using a logit-normal density rather than
a beta density. Neither is generally superior to the other; they simply
represent (minimally) different assumptions about the distribution of
classifier performance across subjects. However, the logit-normal den-
sity is a more natural candidate distribution when deriving a Laplace
approximation, as we do here, since it implies closed-form, interpret-
able update equations and since it enables a straightforward approxi-
mation to the free energy (cf. Theory section). Should the issue which
distribution is optimal for a given dataset at hand become a question
of interest for a particular application, one can weigh the evidence for
different parameterizations by means of Bayesian model selection,
using the code provided in our toolbox, as shown in Brodersen et al.
(2012a).

In addition to their excessive runtime, MCMC approaches to model
inversion come with a range of practical challenges, such as: how to
select the number of required samples; how to check for convergence,
or even guarantee it; how long to design the burn-in period; how to
choose the proposal distribution in Metropolis steps; howmany chains
to run in parallel; and how to design overdispersed initial parameter
densities. By contrast, deterministic approximations such as VB involve
fewer practical engineering considerations. Rather, they are based on a
set of distributional assumptions that can be captured in a simple
graphical model (cf. Figs. 2 and 4). While not a specific theme of this
paper, it is worth reiterating that the free-energy estimate provided
by VB represents an approximation to the log evidence of the model
(cf. Eqs. (9) and (43)), making it easy to compare alternative distribu-
tional assumptions.

Thus, compared to previous MCMC implementations of mixed-
effects inference, the present paper is fundamentally based on an
idea that has been at the heart of many recent innovations in the sta-
tistical analysis of neuroimaging data: the idea that minor reductions

in statistical accuracy are warranted in return for a major increase in
computational efficiency.

Advances in computing power might suggest that the importance
of computational efficiency should become less critical over time; but
neuroimaging has repeatedly experienced how new ideas radically
increase demands on computation time and thus the importance
of fast algorithms. One example is provided by large-scale analyses
such as searchlight approaches (Kriegeskorte et al., 2006; Nandy and
Cordes, 2003), in which we must potentially evaluate as many classifi-
cation results as there are voxels in a whole-brain scan. The speed of
our VB method makes it feasible to create a whole-brain map of poste-
rior mean accuracies within a few minutes (Fig. 10). Ignoring the time
taken by the classification algorithm itself, merely turning classification
outcomes into posterior accuracies would have taken no less than
31 days when using an MCMC sampler with 30,000 samples for each
voxel. By contrast, all computations were completed in less than
8 min when using variational Bayes, as we did in Fig. 10.

The conceptual differences between classical and Bayesian maps
have been discussed extensively in the context of statistical parametric
maps (SPM) and their Bayesian complements, i.e., posterior parametric
maps (PPM; Friston et al., 2002; Friston and Penny, 2003). In brief, pos-
terior accuracy maps (PAM) confer exactly the same advantages over
sample accuracy maps (SAM) as PPMs over SPMs. This makes PAMs
an attractive alternative to conventional (sample-accuracy) searchlight
maps.

An important feature of our approach is its flexibility with regard
to performance measures. While classification algorithms used to be
evaluated primarily in terms of their accuracy, the limitations of this
metric have long been known and are being increasingly addressed
(Akbani et al., 2004; Chawla et al., 2002; Japkowicz and Stephen,
2002). For example, it has been suggested to restore balance by
undersampling the larger class or by oversampling the smaller class.
It is also possible to modify the costs of misclassification (Zhang and
Lee, 2008) to prevent bias. A complementary, more generic safeguard
is to replace the accuracy by the balanced accuracy, which removes
the bias that may arise when a classifier is trained and tested on
imbalanced data.

Fundamentally, accuracies and balanced accuracies address different
scientific questions. Inference on the accuracy answers the question:
what is the probability ofmaking a correct prediction on a trial randomly
drawn from a distribution with the same potential imbalance as that
present in the current training set? Inference on the balanced accuracy,
by contrast, answers the question: what is the probability of a correct
prediction on a trial that is equally likely (a priori) to come from either
class? To assess performance, this is what we are almost always inter-
ested in: the expected accuracy under a flat prior over classes.

The balanced accuracy is not confined to binary classification; it read-
ily generalizes to K classes. Specifically, the twofold normal-binomial
model becomes a K-fold model, and the balanced accuracy φ ¼ 1

K ∑π kð Þ

is computed on the basis of a convolution of K random variables
(cf. Eq. (54)).11 Infraliminal probabilities are then determined w.r.t. the
baseline level 1/K. Even more generally, in those applications where one
wishes to distinguish between different types of error (as, for example,
in differential diagnostics where different misclassifications carry dif-
ferent costs), one could consider a weighted average of class-specific
accuracies.

At first glance, another solution to dealingwith imbalanced datasets
would be to stickwith the conventional accuracy but relate it to the cor-
rect baseline performance, i.e., the relative frequency of the majority
class, rather than, e.g., 0.5 in the case of binary classification. The main
weakness of this solution is that each and every report of classification

11 It is worth remembering that, in the case of a multiclass setting, one would not
necessarily replace the binomial distribution by a multinomial distribution. The
bivariateness of the normal-binomial model refers to the fact that each classification
outcome is either correct or incorrect, not to the number of classes.
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performance would have to include an explicit baseline level, which
would make the comparison of accuracies across studies, datasets, or
classifiers slightly tedious. Future extensions of the approach presented
in this paper might include functional performance measures such as
the receiver-operating characteristic (ROC) or the precision-recall
curve (Brodersen et al., 2010b).

Leaving classification studies aside for a moment, it is instructive to
remember that mixed-effects inference and Bayesian estimation
approaches have been successfully employed in other domains of neu-
roimaging data analysis (Fig. 11). One example are mass-univariate
fMRI analyses based on the general linear model (GLM), where early
fixed-effects models were soon replaced by random-effects and full
mixed-effects approaches that have since become standards in the
field (Beckmann et al., 2003; Friston et al., 1999, 2005; Holmes and
Friston, 1998; Mumford and Nichols, 2009; Woolrich et al., 2004).

A parallel development in the domain of mass-univariate analyses
has been the complementation of classical maximum-likelihood infer-
ence by Bayesian approaches (e.g., in the form of posterior probability
maps; Friston and Penny, 2003). While maximum-likelihood schemes
are concerned with the single most likely parameter value (i.e., mode),
Bayesian inference aims for the full conditional density over possible
parameter values given the data.

Another example concerns group-level model selection, e.g., in the
context of dynamic causal modeling (DCM; Friston et al., 2003). Here,
selecting an optimal model from a set of predefined alternatives initially
rested on criteria for fixed-effects inference, such as the group Bayes
factor (Stephan et al., 2007). This has subsequently been supplanted by
random-effects inference that ismore appropriate for typical applications
in cognitive and clinical neurosciencewhen differentmechanisms under-
lie measured data and thus different models are optimal across subjects
(Stephan et al., 2009).

The present study addresses similar issues, but in a different
context, that is, in classification group analyses. In both cases, an
approximate but efficiently computable solution to a mixed-effects
model (i.e., hierarchical VB) is preferable to an exact estimation of a
non-hierarchical model (such as a t-test on sample accuracies) that
disregards variability at the subject or group level. In other words: “An
approximate answer to the right problem is worth a good deal more
than an exact answer to an approximate problem” (John W. Tukey,
1915–2000).

It is worth noting that the model used in this paper is formally
related to an earlier approach proposed by Leonard (1972). However,
our choice of priors is motivated differently; we introduce a variational
procedure for inference; and we use the normal-binomial model as a
building block to construct larger models that can be used for inference
on other performancemeasures, such as the balanced accuracy. Another

related approach has been discussed by Olivetti et al. (2012), who carry
out inference on the populationmean accuracy bymeans ofmodel selec-
tion between a null model and an above-chance model. For a more
detailed discussion of these approaches, see Brodersen et al. (2012a).

One assumption common to all approaches considered in this
paper, whether Bayesian or frequentist, is that trial-wise classification
outcomes yi are conditionally independent and identically distributed
(i.i.d.) given a subject-specific accuracy πj. This assumption implies

exchangeability, which regards the joint distribution p y1j
;…; ynj

# $
as

invariant to permutations of the indices 1j…nj. Exchangeability can
be safely assumed whenever no information is conveyed by the trial
indices themselves (see Gelman et al., 2003, for a discussion). The
stronger i.i.d. postulate is justified by assuming that test observations
are conditionally i.i.d. themselves. While this may not always hold in
a cross-validation setting (Gustafsson et al., 2010; Kohavi, 1995;
Pereira and Botvinick, 2011; Pereira et al., 2009; Wickenberg-Bolin
et al., 2006), it is an appropriate assumption when adopting a
single-split (or hold-out) scheme, by training on one half of the data
and testing on the other (cf. discussion in Brodersen et al., 2012a).

An important aspect of the proposed model is that it can be applied
regardless of what underlying classifier was used; its strengths result
from the fact that it accounts for the hierarchical nature of classification
outcomes observed at the group level. This suggests that one might
want to use classifiers that account for the data hierarchy already
at the stage of classification. Unlocking the potential benefits of this
approach will be an interesting theme for future work (see Gopal
et al., 2012, for an example).

Finally, it is worth noting that the regularization (shrinkage) of
subject-specific posterior estimates by group-level estimates which our
model conveys (cf. Figs. 5j, 9d) may be beneficial for a number of
real-world applications. One example are studies where the number of
observations (trials) per subject cannot be controlled experimentally.
This is the case in all behavioral paradigms in which the number of trials
eligible for classification depends (in part) on the subject's behavior. It is
also the case in some clinical applications, e.g., in epilepsy or schizophre-
nia. In experiments involving patients suffering from these conditions,
the occurrence of epileptic and hallucinatory events, respectively, cannot
be controlled by the clinician during the period of investigation. In this
case, the amount by which any one subject-specific estimate is shrunk
towards the population mean is correctly scaled by the number of trials
in that subject (Eq. (38)). The posterior population mean, in turn, is
based on the sum of these subject-specific estimates (Eq. (28)) and thus
also takes into account howmany trials were obtained from each subject.

In summary, the VB approach proposed in this paper is as easy to
use as a t-test, but conveys several advantages over contemporary

(a) GLM group studies (b) DCM group studies (c) classification group studies

population

subject

session

Fig. 11. Analogies between mixed-effects models in neuroimaging. (a) The first broadly adopted models for mixed-effects inference and Bayesian estimation in neuroimaging were
developed for mass-univariate fMRI analyses based on the general linear model. The figure shows a graphical representation of the (random-effects) summary-statistics approximation
tomixed-effects inference. (b)Mixed-effectsmodels have subsequently also been developed for group studies based on dynamic causalmodeling (DCM). (c) The present study addresses
similar issues, but in a different context, that is, in group classification analyses.
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fixed-effects and random-effects analyses. These advantages include:
(i) posterior densities as opposed to point estimates of parameters;
(ii) increased sensitivity (statistical power), i.e., a higher probability of
detecting a positive result, especially with small sample sizes; (iii) a
shrinking-to-the-population (or regression-to-the-mean) effect whose
regularization leads to more precise subject-specific accuracy estimates;
and (iv) posterior accuracy maps (PAM) which provide a mixed-effects
alternative to conventional sample accuracy maps (SAM).

In order to facilitate its use and dissemination, the VB approach intro-
duced in this paper has been implemented as open-source software
for both MATLAB and R. The code is freely available for download
(http://www.translationalneuromodeling.org/software/). With this
software we hope to assist in improving the statistical sensitivity and
interpretation of results in future classification group studies.
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MCMC algorithm 

The variational Bayes scheme presented in the main text is computationally highly efficient. 

However, its results are only exact to the extent to which its distributional assumptions are 

justified. To validate these assumptions, we compared VB to an asymptotically exact stochastic 

approach. Markov chain Monte Carlo (MCMC) is one such approach; it is computationally much 

more expensive than variational Bayes but exact in the limit of infinite runtime. 

Here, we describe a Gibbs sampler for inverting the univariate normal-binomial model introduced 

in the main text. This algorithm is analogous to the one we previously introduced for the inversion 

of the bivariate normal-binomial model in Brodersen et al. (2012) but uses the new 

parameterization introduced in the present manuscript. It proceeds by cycling over model 

parameters, drawing samples from their full-conditional distributions, until the desired number of 

samples (e.g., 106) has been generated. 

The algorithm is initialized by drawing initial samples from overdispersed starting distributions: 

  � �3,0|)0()0( PP Nm  (1) 

  � �101)0()0( ,1|OO Gm  (2) 

  � �mmm IN uum 3,0|)0()0( UU  (3) 

(We use the notation � �T|xpxm  to denote the process of sampling a new value from the 

probability distribution � �T|xp  [a distribution in x  with parameters T ] and assigning it to the 

variable x .) 

Next, to obtain a sample from the first posterior of interest, )|( kp P , we draw from the full-

conditional1 distribution ),|( )1()1( �� WW UOPp . Since the Gaussian prior )(Pp  is conjugate with 

                                                           
1 In Gibbs sampling, the full-conditional distribution of a model parameter refers to the conditional 
posterior given the data and all model parameters other than the one under consideration. 
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respect to the likelihood ),|( OPU jp , the full-conditional posterior (i.e., is the distribution from 

which 
)(WP  is sampled) is available in closed form, 
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In the above distribution, 0P  and 0K  represent the prior population mean and precision, )1( �WO  is 

the latest sample from the population precision, and 
)1( �WU  is the sample average over the 

components of the latest samples from subject-specific accuracies. Thus, as is typical of Bayesian 

inference, both moments of the full-conditional distribution embody the balance between prior 

precision 0K  and data precision 
)1( �WOm . 

Having drawn a sample from )|( kp P , we next turn to the problem of sampling from )|( kp O . 

For this we consider the full-conditional distribution ),|( )1()( �WW UPOp . As above, the choice of a 

conjugate prior yields a closed-form posterior, 
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where )1( �WU j  represents the latest sample from the posterior accuracy in subject j , and where 

)(WP  is the sample drawn in (4). 

Finally, to sample from the subject-specific posteriors )|( kp jU , we consider each subject’s full-

conditional distribution ),,|( )()(
jj kp WW OPU  in turn. Since a closed-form expression is not 

available for these distributions, we embed a Metropolis-Hastings step into our Gibbs sampler. 

This step can be implemented by drawing a candidate sample from a (symmetric) proxy density 

  � �2)1(** 2,| �m WUUU jjj N , (6) 

where the choice of variance of the proxy density was guided empirically to balance exploration 

and exploitation of the resulting Markov chain (cf. Brodersen et al., 2012). The sample drawn in 

(6) is accepted as the next )(WU j  with probability 
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Iterating over all three above steps yields a series of samples ),,( )()()( WWW UOP  whose empirical 

joint distribution approaches the true posterior )|,,( kp UOP  in the limit of an infinite number of 

samples.  

Inferences presented in the paper were based on 100,000 samples, generated using 8 parallel 

chains (cf. Brodersen et al., 2012). Assessing convergence, we found that with these settings the 

average ratio of within-chain variance to between-chain variance was bigger than 0.99. In other 

words, the variances of samples within and between chains were practically indistinguishable. The 

Metropolis rejection rate was approx. 0.3, thus ensuring an appropriate balance between 

exploration (of regions with a lower density or other potential modes) and exploitation (of regions 

with a higher density). 

Supplemental references 

Brodersen KH, Mathys C, Chumbley JR, Daunizeau J, Ong CS, Buhmann JM, Stephan KE (2012) 
Bayesian mixed-effects inference on classification performance in hierarchical data sets. 
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