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This paper outlines a hierarchical Bayesian framework for interoception,

homeostatic/allostatic control, and meta-cognition that connects fatigue and depression

to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the

inversion of a generative model of viscerosensory inputs allows for a formal definition of

dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently,

low evidence for the brain’s model of bodily states) and allostasis (as a change in prior

beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically,

we propose that the performance of interoceptive-allostatic circuitry is monitored by

a metacognitive layer that updates beliefs about the brain’s capacity to successfully

regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression

can be understood as sequential responses to the interoceptive experience of

dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy.

While fatigue might represent an early response with adaptive value (cf. sickness

behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of

low self-efficacy and lack of control (cf. learned helplessness), resulting in depression.

This perspective implies alternative pathophysiological mechanisms that are reflected

by differential abnormalities in the effective connectivity of circuits for interoception

and allostasis. We discuss suitably extended models of effective connectivity that

could distinguish these connectivity patterns in individual patients and may help inform

differential diagnosis of fatigue and depression in the future.
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INTRODUCTION

Fatigue is a prominent symptom of major clinical significance,
not only in chronic fatigue syndrome (CFS) per se, but across
a wide range of immunological and endocrine disorders, cancer
and neuropsychiatric diseases (for overviews, see Wessely, 2001;
Chaudhuri and Behan, 2004; Dantzer et al., 2014). For example,
it is the most frequent (Stuke et al., 2009) symptom in Multiple
Sclerosis (MS), with major impact on quality of life. It is
strongly associated with depression (Wessely et al., 1996; Bakshi
et al., 2000; Kroencke et al., 2000; Pittion-Vouyovitch et al.,
2006), and longitudinal studies have demonstrated that fatigue
represents a risk factor for depression (and vice versa; Skapinakis
et al., 2004). Additionally, fatigue represents a core criterion
for the diagnosis of major depression in standard psychiatric
classification schemes (ICD-10 and DSM-5).

The clinical concept of fatigue is a heterogeneous construct,
comprising at least two dimensions (Kluger et al., 2013):
fatiguability of cognitive and motor processes, and subjective
perception of fatigue. While the former can be measured
objectively, the latter requires self-report via questionnaires.
Given its clinical importance, it has been remarkably difficult
to develop a theory of fatigue that is comprehensive, specific
and allows for developing objective clinical tests (Wessely,
2001). Research on its pathophysiology has largely focused on
molecular processes, particularly in the context of inflammation
(Dantzer et al., 2014; Patejdl et al., 2016), but efforts to link
these molecular processes to the physiology and computation
(information processing) of cerebral circuits are rare. This paper
attempts to address this challenge and outlines the foundations
of a theory of fatigue that is grounded in interoception
(Craig, 2002) and homeostatic/allostatic control (Sterling,
2012), offering a formal (hierarchical Bayesian) perspective
on (some of) the computations involved. In particular, we
propose a metacognitive mechanism that explains the sequential
occurrence of fatigue and depression, given a state of prolonged
dyshomeostasis.

This paper has the following structure. First, we discuss why
disease theories of fatigue confined to the molecular/cellular
level are not sufficient for a comprehensive understanding
of fatigue, but need to be complemented by a computational
perspective. Second, as a basis for developing this perspective,
we review long-standing notions from systems theory and
control theory and their implications for interoception as
well as homeostatic and allostatic control. Third, we apply a
hierarchical Bayesian view to fatigue and cast it as a meta-
cognitive phenomenon: a belief of failure at one’s most
fundamental task—homeostatic/allostatic regulation—which
arises from experiencing enhanced interoceptive surprise.
We suggest that fatigue is a (possibly adaptive) initial
allostatic response to a state of interoceptive surprise; if
dyshomeostasis continues, the belief of low allostatic self-
efficacy and lack of control may pervade all domains of
cognition and manifests as a generalized sense of helplessness,
with depression as a consequence. Fourth, we derive specific
predictions against which this theory can be tested and outline
the necessary methodological extensions of contemporary

models of effective connectivity, such as DCM. Finally,
we consider how such extended generative models might
become useful for differential diagnosis of fatigue in the
future.

THE NEED FOR A COMPUTATIONAL
THEORY OF FATIGUE

Existing pathophysiological theories of fatigue mainly refer
to inflammatory and metabolic processes at the molecular
level. For example, a longstanding observation is that
pro-inflammatory cytokines, resulting from peripheral
(extra-cerebral) immunological processes, induce “sickness
behavior” (Dantzer and Kelley, 2007) with fatigue as a
key symptom. This may result from a range of different
mechanisms, including reduced synthesis of monoaminergic
transmitters or inflammation-induced shifts in the production of
metabolites such as kynurenines, which impact on transmission
at glutamatergic synapses (for a comprehensive recent review,
see Dantzer et al., 2014).

While these hypotheses have been very influential and useful
in suggesting potential future treatment avenues, they do not,
on their own, allow for constructing a comprehensive theory of
fatigue. First, as for any neuropsychiatric symptom, we eventually
need a theory that unifies and links disease processes across
molecular, cellular and circuit (systems) levels of description.
This is important because a theory of fatigue that is confined
to the molecular level does not explain how clinical symptoms
arise; by contrast, a circuit-level description is the closest we can
presently get to behavior and subjective experience. Moreover,
neuropsychiatric disease processes can not only originate from
the molecular level and spread “bottom-up,” causing cellular
and circuit-level disturbances; in addition, the reverse (top-
down) direction and the ubiquitous existence of reciprocal
brain-body interactions are well-established (Sapolsky, 2015).
For example, seemingly maladaptive behavior can materialize as
the (optimal) consequence of beliefs that form under exposure
to specific environmental input statistics (Schwartenbeck et al.,
2015b). That is, in the absence of any primary molecular or
synaptic pathology, exposure to unusual environmental events
can induce distorted beliefs about the causal structure of the
world, e.g., that it is inherently unpredictable or uncontrollable
(cf. learned helplessness; Abramson et al., 1978). Such beliefs
engender misdirected coping behavior and have profound
physiological consequences, including a dysregulation of cerebral
control over endocrine and autonomic nervous system processes
(e.g., aberrant activation of the hypothalamic-pituitary axis;
HPA; Tsigos and Chrousos, 2002). Importantly, the ensuing
immunological and metabolic disturbances in the body exert
strong feedback effects on cerebral circuits. For example, stress-
related increases in levels of cortisol and pro-inflammatory
cytokines affect NMDA receptor (NMDAR) function (Nair
and Bonneau, 2006; Gruol, 2015; Vezzani and Viviani, 2015).
Importantly, NMDAR dependent signaling is thought to be
essential for updating and encoding representations of beliefs
(Corlett et al., 2010; Vinckier et al., 2016). This suggests
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that peripheral inflammatory or endocrine disturbances could
impede the adjustment of aberrant beliefs by which they
were caused in the first place (i.e., a positive feedback loop).
In brief, the existence of closed-loop interactions between
cognitive and bodily processes implies that we require a wider
theory of fatigue than one focusing on molecular events
alone.

There is a second, more practical, reason why a purely
molecular/cellular theory of fatigue cannot provide a clinically
sufficient account of fatigue: molecular disease processes in brain
tissue are not easily accessible for non-invasive diagnostics in
humans. The relative separation of the brain from the body by the
blood-brain barrier means that we only have indirect access to
brain tissue, such as biochemical analyses of cerebrospinal fluid
(CSF), and there are very few diagnostic questions (e.g., in neuro-
oncology or epilepsy) where the risks of brain tissue biopsies
or invasive recordings are justified by diagnostic benefits.
However, provided we have a concrete model that specifies
how a disease process at the molecular/cellular level leads to
measurable changes in the activity of specific brain circuits, one
can, in principle, infer the expression of this process from non-
invasive neuroimaging and electrophysiological measurements,
such as functional magnetic resonance imaging (fMRI) or
magneto-/electroencephalography (M/EEG). Technically, this
involves a so-called “generative model” m which specifies how
the hidden (unobservable) state x of a neuronal circuit translates
probabilistically into a measurement obtained y with fMRI or
M/EEG, and which can be used to infer hidden states from
measurements (Figure 1). Using a generative model of brain
activity or behavioral measurements to address diagnostic
questions amounts to a “computational assay” (Stephan and
Mathys, 2014; Stephan et al., 2015). The application of generative
models to clinical questions is presently beginning to take place
across the whole range of neuropsychiatry, including applications
to schizophrenia (Schlagenhauf et al., 2014), depression
(Hyett et al., 2015), bipolar disorder (Breakspear et al., 2015),
Parkinson’s disease (Herz et al., 2014), channelopathies (Gilbert
et al., 2016), or epilepsy (Cooray et al., 2015). One particular
approach we return to below is the generative modeling of
neurophysiological circuits. For example, dynamic causal models
(DCMs; for reviews see Daunizeau et al., 2011; Friston et al.,
2013) allow one to infer directed synaptic connections (effective
connectivity) from neuroimaging or electrophysiological
data.

Generative modeling is an attractive approach for establishing
differential diagnostic procedures. However, given the
myriad of possible disease processes, guidance by clinical
theories is crucial for the development of computational
assays. The framework outlined in this paper is meant
to inform the development generative models that infer
mechanisms of fatigue and depression from fMRI and
MEG/EEG data. The predictions by this framework suggest
that differential diagnosis could be decisively facilitated by
model-based estimates of directed synaptic connectivity
(effective connectivity) within interoceptive circuits and
their interactions with regions potentially involved in
meta-cognition.

TELEOLOGICAL BRAIN THEORIES AS
FUNDAMENT FOR UNDERSTANDING
FATIGUE

The diverse behavioral, cognitive and emotional facets of
fatigue, its occurrence in numerous syndromatically defined
diseases, and the multitude of findings from immunology,
neurophysiology and psychology offer a large number of degrees
of freedom for “bottom-up” explanations of this complex
symptom (Dantzer et al., 2014; Patejdl et al., 2016). Given this
complexity, investigating fatigue requires guidance by formal
theories which provide top-down constraints on organizing and
interpreting the diversity of experimental findings. These top-
down constraints could be derived, for example, from theories
about the purpose, structure and biophysical implementation
of the brain’s computations1. This strategy is at the heart of
an emerging discipline, “Computational Psychiatry” (Montague
et al., 2012; Stephan andMathys, 2014; Friston et al., 2014b; Huys
et al., 2016), and has shown promise in tackling other complex
neuropsychiatric symptoms, such as delusions (Corlett et al.,
2010).

Although its historical roots have rarely been discussed so far,
Computational Psychiatry builds on seminal teleological theories
of biological (and other) systems that provide fundamental
constraints for any attempt of understanding brain function.
These include, for example, general systems theory (Von
Bertalanffy, 1969), cybernetics and control theory (Wiener, 1948;
Ashby, 1954, 1956; Conant and Ashby, 1970; Powers, 1973;
Carver and Scheier, 1982; von Foerster, 2003; Seth, 2015a,b,c)
and constructivism (Richards and von Glasersfeld, 1979). Some
core ideas from these general theories of inference and control in
biological systems have laid the foundation for recent concepts
of perception and action in computational neuroscience (e.g.,
Mumford, 1992; Dayan et al., 1995; Rao and Ballard, 1999;
Friston, 2005, 2010; Friston et al., 2006; Doya et al., 2011). For
example, the central notion of radical constructivism that the
brain actively “constructs” a subjective reality from noisy and
ambiguous sensory inputs (Richards and von Glasersfeld, 1979;
von Foerster, 2003)—as opposed to the brain representing an
objective outer reality that is reflected by sensory inputs—are
expressed formally, using the language of probability theory,
in hierarchical Bayesian models we encounter below. Other
central ideas—such as the notion that cognitive systems are self-
referential and monitor themselves (von Foerster, 2003) are yet
to be exploited fully, e.g., for models of metacognition.

This paper represents a first attempt to use some of these
principles for articulating a novel theory of fatigue and how
it may transition to depression. In brief, our account views
fatigue and depression as metacognitive phenomena: a set of
beliefs held by the brain about its own functional capacity—
specifically, a perceived lack of control over bodily states. This

1In the well-known framework by Marr (1982), these levels are referred to as
the “computational,” “algorithmic,” and “implementational” levels of analysis,
respectively. Considering the original definition of “computation” in theoretical
computer science, these designations are partially confusing, and in the following
we will therefore refer to the first level as the “teleological” (purpose) level of
description.
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FIGURE 1 | (A) Bayes theorem provides the foundation for a generative model m. This combines the likelihood function p(y|x,m) (a probabilistic mapping from hidden

states of the world, x, to sensory inputs y) with the prior p(x|m) (an a priori probability distribution of the world’s states). Model inversion corresponds to computing the

posterior p(x|y,m), i.e., the probability of the hidden states, given the observed data y. The posterior is a “compromise” between likelihood and prior, weighted by their

relative precisions. The model evidence p(y|m) in the denominator of Bayes’ theorem is a normalization constant that forms the basis for Bayesian model

comparison—see main text. (B) Suitably specified and validated generative models with mechanistic (e.g., physiological or algorithmic) interpretability could be used

as a computational assay for diagnostic purposes. The left graphics is reproduced, with permission, from Garrido et al. (2008). (C) Contemporary models of

perception (the “Bayesian brain hypothesis”) assume that the brain instantiates a generative model of its sensory inputs. Perception corresponds to inverting this

model, yielding posterior beliefs about the causes of sensory inputs. The globe picture is freely available from http://www.vectortemplates.com/raster-globes.php.

belief arises when attempts of homeostatic regulation fail to
reduce the experience of chronic dyshomeostasis: enduring
deviations between expected and sensed bodily states. These
persistent deviations or prediction errors signal interoceptive
surprise or, equivalently, low evidence of the brain’s model of
bodily processes. Before we can turn to this notion in more
detail, we review some ideas on the role of perception (inference)
and prediction (action selection) for homeostasis which originate
from the longstanding literature mentioned above and have
resurfaced in more recent work in computational neuroscience.

The Brain As an Organ for Homeostatic
Control
The brain is literally “embodied”: its structural and functional
integrity depends on mechanical support, energy supply, and

the provision of a suitable biochemical milieu provided by
the body. As a corollary, the selectionist pressures which act
upon the brain during evolution cannot be uncoupled from
those acting upon the body’s milieu intérieur (Claude Bernard);
i.e., control of bodily homeostasis must constitute a primary
purpose of brain function (Cannon, 1929). This control has long
been known to involve reflex-like actions (comprising motor,
endocrine, immunological, and autonomic processes) that are
driven by feedback and the resulting “prediction error”—the
discrepancy between an expected bodily state (a homeostatic
setpoint2) and its actual level as signaled by sensory inputs
from the body (Modell et al., 2015); see Figure 4. Feedback- or

2Below, we will define homeostatic setpoints as the expectations (means) of prior
beliefs about the states the body should inhabit, and homeostatic range as the
variance of these prior beliefs.
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error-based reactive control has been studied for many vitally
important variables (such as blood acidity, body temperature,
blood levels of glucose and calcium, plasma osmolality) (Woods
and Wilson, 2013), and the anatomy and physiology of neuronal
circuits involved have been mapped out in detail by physiologists
over many decades.

While this reactive type of control dominates the classical
literature on homeostasis, it likely only represents the lowest
layer in a hierarchy of temporally extended control mechanisms,
with most immediate consequences. By contrast, assuming that
the brain maintains a model of bodily states and the external
environment, higher levels enable prospective control, with two
essential components: inference (on current bodily state) and
prediction (of its future evolution, on its own and in response
to chosen actions) (Sterling, 2012; Penny and Stephan, 2014;
Pezzulo et al., 2015; Seth, 2015a). There are several reasons why
homeostatic regulation requires a model that enables inference
(perception) and prediction (action selection). First, control is
“blind” without perceptual inference: the brain does not have
direct access to either bodily or environmental states, but has to
infer them from sensory inputs which are inherently noisy and
ambiguous. Disentangling the many external states that could
underlie any given sensory input is an ill-posed inverse problem
that requires constraints or regularization (e.g., by the priors of a
generative model; Lee and Mumford, 2003; Kersten et al., 2004).
Second, numerous experimental observations indicate that the
brain engages in regulatory responses prior to a homeostatic
perturbation, provided it can be anticipated (Sterling, 2012).
In other words, a predicted deviation from a homeostatic
setpoint is avoided by choosing suitable actions in advance.
Importantly, setpoints are hierarchically structured, and changes
in hierarchically lower setpoints may be necessary to prevent
departure of bodily state from higher setpoints (Powers, 1973).
For example, a temporary change in (lower) setpoints for blood
pressure and catecholamine levels may be elicited to engage in
fight-flight behavior that is necessary to ensure bodily integrity
(higher setpoint). As we will see below, this longstanding notion
of hierarchically structured homeostatic setpoints fits nicely to
hierarchical Bayesian architectures, where the prior belief at one
level is constrained by the prior belief at the next higher level.

This anticipatory control or allostasis (“stability through
change”; Sterling, 2014) necessarily requires a model capable
of generating predictions. The notion of model-based allostatic
regulation is a special case of the more general and long-standing
view that the brain requires a model of the external world in
order to implement optimal control. Specifically, seminal work
by Conant and Ashby (1970) has resulted in an influential
theorem “[...] which shows, under very broad conditions, that
any regulator that is maximally both successful and simple must
be isomorphic with the system being regulated. [...] The theorem
has the interesting corollary that the living brain, so far as it is
to be successful and efficient as a regulator for survival, must
proceed, in learning, by the formation of a model (or models)
of its environment.”

This notion of anticipatory homeostatic control (allostatic
control) has important ramifications. Significant perturbations
of bodily states arise from the physical and social environments

through which the brain navigates the body. For example,
basic properties of the physical environment (e.g., ambient
temperature, weather, physical activity required by geographical
conditions, availability of food andwater) have delayed but severe
effects on key homeostatic variables (such as body temperature,
blood glucose levels, plasma osmolality); these must be predicted
in advance and incorporated into the selection of actions in order
to avoid fatal effects (for some simple simulations, see Penny and
Stephan, 2014). Similarly, in the social domain, learning about the
(potentially hostile) intentions of other agents in a reactive way,
by trial and error, is risky. Instead, a model or “theory of mind”
of other agents’ mental states (Frith and Frith, 2012), perhaps
grounded in the prolonged interaction with early-life caregivers,
is required to predict and avoid interactions with potentially
deleterious consequences for social status, access to resources,
and ultimately bodily integrity. This means that anticipatory
control of bodily states would be drastically incomplete if the
brain did not possess a model which enabled inference on current
states of the physical and social environment and predicted their
trajectories into the future. In brief, principles of anticipatory
homeostatic control and the necessity of model-based prediction
must generalize beyond the body and apply to physical and
social domains of the external world. In the following, the term
“external world” is used to refer to both the body and the physical
and social world outside the body; this is for notational brevity
only and not meant to disregard differences in how bodily, social
and physical states can influence brain activity in general and the
emergence of fatigue in particular; a topic we return to below.

Generative Models
The notion that the brain maintains and continuously updates
a model of its external world for perceptual inference and
anticipatory control has been around for a considerable period
(Conant and Ashby, 1970). What could such a model look like?
Across various proposals, two main design features re-occur and
are supported by strong theoretical and empirical arguments.
That is, (i) the brain’s model is likely to follow principles of
probability theory and hence represent a “generative” model;
and (ii) structurally, it is plausible to assume that this has a
hierarchical structure.

A so-called “generative model” directly follows from the
basic laws of probability theory and essentially implements
Bayes’ theorem—a simple but fundamental statement about how
uncertain sources of information (represented by conditional
probabilities) can be combined (Figure 1). In the context
of perception, a generative model m combines a “likelihood
function” p ( y | x, m) (a probabilistic mapping from hidden states
of the world, x, to sensory inputs y), with a “prior” p (x |m) (an
a priori probability distribution of the world’s states) (Figure 1).
The likelihood describes how any given state of the world causes
a sensory input with a certain probability; the prior expresses the
range of values environmental states inhabit a priori and thus
encodes learned environmental statistics. One way to understand
why this model is called “generative” is to note that it can be
used to generate or simulate sensory inputs (data): this simply
requires that one samples a value from the prior distribution and
plugs it into the likelihood function. This process can be turned
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around: that is, given some observed data (experienced sensory
inputs), Bayes’ theorem allows one to compute the probability of
the hidden states (the “posterior” p

(

x | y, m
)

)—this is inference:

p
(

x | y, m
)

=
p

(

y | x, m
)

p ( x |m )

p
(

y |m
) (1)

As inference corresponds to inverting the process of data
generation (from hidden states to sensory inputs), it is also
referred to as “inversion” of the generative model, or solving
the “inverse problem.” Finally, an important component of
a generative model is the model evidence p

(

y |m
)

(the
denominator from Bayes’ theorem). The evidence represents a
principled measure of the goodness of a generative model which
trades-off accuracy and complexity (Stephan et al., 2009; Penny,
2012); notably, its logarithm relates to the information-theoretic
concept of (Shannon) surprise, S (sometimes also referred to as
surprisal or self-information to distinguish it from psychological
notions of surprise). Specifically, the log evidence is identical to
negative surprise about seeing the data under modelm:

log p
(

y |m
)

= −S (y |m) (2)

In other words, a good model is one that minimizes the surprise
about encountering the data. Conversely, persistent surprise is
the hallmark of a bad model.

Generative models can be expressed in a hierarchical form,
where each level provides a prediction (prior) for the state of the
level below; this prediction can be compared against the actual

state (likelihood), resulting in a prediction error which can be
signaled upwards for updating the prior (Figures 2, 3). This is
an extremely general concept which not only underlies common
models in statistics (Kass and Steffey, 1989), but provides a key
metaphor for models of brain function (e.g., Rao and Ballard,
1999; Lee and Mumford, 2003; Friston, 2005, 2008; Petzschner
et al., 2015), such as predictive coding described below.

The “Bayesian Brain”
The hierarchical form of generative models fits remarkably
well to structural principles of cortical organization, where
the sensory processing streams consist of hierarchically related
cortical areas. This hierarchy is defined anatomically in terms
of different cytoarchitectonic properties and types of synaptic
connections (bottom-up/ascending/forward connections vs. top-
down/descending/backward connections) (Felleman and Van
Essen, 1991; Hilgetag et al., 2000). These connections are thought
to have different functional properties which are compatible
with hierarchical Bayesian inference. For example, in the
visual system, anatomical and physiological studies suggest that
descending connections convey predictions about activity in
lower areas (e.g., Alink et al., 2010; Nassi et al., 2013; Vetter
et al., 2015) and have largely inhibitory effects (e.g., Angelucci and
Bressloff, 2006; Andolina et al., 2013), as required for “explaining
away” in predictive coding (see the discussion in Nassi et al.,
2013). Furthermore, pharmacological and computational studies
of the auditory mismatch negativity (MMN) system have
provided evidence for NMDA receptor dependent signaling of

FIGURE 2 | (A) A graphical summary of predictive coding. See main text for details. Figure reproduced, with permission, from Rao and Ballard (1999). (B) A possible

neuronal implementation of predictive coding. See main text for details. Figure reproduced, with permission, from Friston (2008).
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FIGURE 3 | A graphical summary of computational and physiological

key components of hierarchical Bayesian inference. Computationally,

prediction errors are conveyed by ascending or forward connections, while

predictions are signaled via backward or descending connections. Critically,

both experience a weighting by precision. Physiologically, the currently

available evidence suggests that, in cortex, prediction errors are signaled via

ionotropic glutamatergic receptors (AMPA and NMDA receptors), predictions

via NMDA receptors, while precision-weighting is either implemented through

neuromodulatory inputs (e.g., dopamine or acetylcholine) or by local

GABAergic mechanisms. The figure is adapted, with permission, from Stephan

et al. (2016b).

prediction errors via ascending connections (Wacongne et al.,
2012; Schmidt et al., 2013). In summary, while definitive
proof is outstanding, there is general consensus that ascending
connections serve to signal prediction errors up the hierarchy,
while predictions are communicated from higher to lower areas
via descending connections (for reviews, see Friston, 2005;
Corlett et al., 2009; Figure 3 provides an overview).

In the past two decades, theories of perception have
converged on the idea that perception corresponds to inverting
a hierarchical generative model of sensory inputs (Dayan et al.,
1995; Rao and Ballard, 1999; Friston, 2005). In some sense,
this idea is not new: more than a century ago, the physiologist
Helmholtz already suggested that the brain would have to
invert the process of how a visual image was generated in
order to infer the underlying physical cause (perception as
“unconscious inference”; Helmholtz, 1860/1962). The more
recent formalization of this notion under principles of probability
theory is commonly referred to as the “Bayesian brain”
hypothesis (Friston, 2010; Doya et al., 2011). In addition
to the reasons given above, the general idea of perception
as inversion of a hierarchical generative model derives from
numerous empirical observations and theoretical arguments.
Here, we briefly summarize a few central points and point the
interested reader to more detailed literature. First, the sensory

inputs the brain receives are noisy and often show a non-linear
dependence on states in the world; this introduces the need for
regularization by prior expectations or knowledge (Friston, 2003;
Lee and Mumford, 2003; Kersten et al., 2004). Second, it can be
shown that the integration of uncertain sources of information
according to principles of probability theory (Bayesian inference)
is optimal; this implies that the brain should have evolved to
implement perceptual inference in the way such that Bayesian
inference is approximated (Geisler and Diehl, 2002). Third, a
large body of psychophysical experiments indicate that basic
perceptual judgements and multi-sensory integration show clear
evidence for the operation of Bayesian inference (for overviews,
Knill and Richards, 1996; Geisler and Kersten, 2002; Petzschner
et al., 2015). Finally, a generative model not only supports
inference, but also allows for predictions. This can be achieved
in several ways, for example, predictions about future sensory
inputs can be derived from the model’s posterior predictive
density, and predictions about future states of the world under
a chosen action or goal can be derived from the model’s posterior
dynamics (for example, see Penny and Stephan, 2014).

This link from inference to prediction is important because it
provides a basis for coupling perception to action; a fundamental
basis for homeostatic control, as described above. Generally,
the challenge of control is framed by asking, informed by an
estimate of the current state of the world (and possibly a
prediction how it evolves), what action optimizes a particular
criterion (a “utility function” or “cost function”). One framework
to address this challenge is Bayesian decision theory (Körding,
2007; Dayan and Daw, 2008; Daunizeau et al., 2010). In a
nutshell, this identifies an optimal action as one that maximizes
the “expected utility” (where “expected” refers to a weighted
average; i.e., the predicted outcomes are weighted by their
relative uncertainty). The definition of utility, however, is not
trivial. One common choice is to define utility in relation to
“rewards.” This, however, only shifts the problem and raises
the question what constitutes “reward” for the brain (compare
the discussion in Friston et al., 2012). From a homeostatic
perspective, the utility or reward afforded by a particular
action depends on four estimates based on inference and
prediction:

• an estimate of the current bodily state (interoception);
• an estimate of the current environmental state (exteroception);
• a prediction of how these states would evolve in time (provided

by a model of bodily and environmental dynamics);
• and a prediction to what degree the action considered will keep

bodily state close to a homeostatic setpoint over time (allostatic
control).

Current models of decision-making do not incorporate
all of these aspects, and first attempts of accounting for
homeostasis and allostasis in formal models of decision-
making have only surfaced relatively recently (e.g., Keramati
and Gutkin, 2014; Penny and Stephan, 2014; Pezzulo et al.,
2015).

Importantly, perception and action do not operate in
isolation, nor is there a unidirectional dependency of action on
perception. Any chosen action changes the world (and/or the way
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the brain samples it3) and hence the feedback the brain receives
in terms of new sensory inputs. This sensory feedback (likelihood
function) is combined with the current prior belief (prediction)
held by the agent, resulting in a belief update about the state of
the world (posterior probability) which, in turn, can inform new
actions. This closes the loop from perception to action.

In summary, this section discussed homeostatic and allostatic
control as fundamental objectives for the brain and reviewed
long-standing concepts that highlight the importance of closed
loops of perception and action. In particular, we have emphasized
the notion that homeostatic control is not simply reactive, but
proactive or anticipatory, and rests on a model of the external
world which includes both the body and the influences it may
receive from physical and social domains of the environment. Of
course, these ideas raise the question how predictive models of
this sort may actually be implemented by the brain. This question
has been addressed by several recent theories, usually with a focus
either on the body (Seth et al., 2011; Seth, 2013, 2015a; Feldman-
Barrett and Simmons, 2015) or its environment (Rao and Ballard,
1999; Friston, 2005). In the next section, we review two classes
of theories—predictive coding and active inference—which have
recently begun to find application to questions of interoception
and homeostasis.

Predictive Coding and Hierarchical
Filtering
Predictive coding is a long-standing idea about neural
computation that was initially formulated for information
processing in the retina (Srinivasan et al., 1982). In its current
form, predictive coding postulates that perception rests on the
inversion of a hierarchical generative model of sensory inputs
which reflects the hierarchical structure of the environment
and predicts how sensory inputs are generated from (physical)
causes in the world (Rao and Ballard, 1999; Friston, 2005). By
inverting this model, the brain can infer the most likely cause
(environmental state) underlying sensory input; this process
of inference corresponds to perception. At any given level of
the model, it is the (precision-weighted, see below) “prediction
error” that is of interest—the deviation of the actual input from
the expected input. Prediction errors signal that the model needs
to be updated and thus drive inference and learning.

Anatomically, models of predictive coding are inspired by
the remarkably hierarchical structure of sensory processing
streams in cortex, where the laminar patterns of cortical-cortical
connections define their function as ascending (forward or
bottom-up) or descending (backward or top-down) connections
and establish hierarchical relations between cortical areas
(Felleman and Van Essen, 1991; Hilgetag et al., 2000).
Computationally, the key idea of predictive coding is that cortical
areas communicate in loops: Each area sends predictions about
the activity in the next lower level of the hierarchy via backward
connections; conversely, the lower level computes the difference
or mismatch between this prediction and its actual activity and

3For example, eye movements do not influence the environment beyond the
body (social interactions perhaps excepted), but determine sampling of visual
information.

transmits the ensuing prediction error by forward connections
to the higher level, where this error signal is used to update
the prediction (Figures 2, 3). This recurrent message passing
takes place across all levels of the hierarchy until prediction
errors are minimized throughout the network. In the words
of Rao and Ballard (1999): “[...] neural networks learn the
statistical regularities of the natural world, signaling deviations
from such regularities to higher processing centers. This reduces
redundancy by removing the predictable, and hence redundant,
components of the input signal.” This is a computationally
attractive proposition because it satisfies information-theoretical
criteria for a sparse code (Rao and Ballard, 1999).

In this scheme, minimizing prediction errors under the
predictions encoded by the synaptic weights of backward
connections in the hierarchy corresponds to hierarchical
Bayesian inference and allows for computing the posterior
probability of the causes, given the sensory data. Notably,
plausible neuronal implementations exist which are compatible
with known neuroanatomy and neurophysiology (Friston, 2005,
2008; Bastos et al., 2012); for a beautiful tutorial introduction (see
Bogacz, in press).

A notion closely related to predictive coding is the idea that
layers of hierarchical generative models may not predict the state
of the next lower level, but its temporal evolution. This is known
as hierarchical filtering and emphasizes the importance of taking
into account the volatility of the environment, i.e., the temporal
instability of its statistical structure, such as the probabilities by
which one event causes another (Behrens et al., 2007; Mathys
et al., 2011). Here, a hierarchical generative model combines a
lower layer with value prediction errors about environmental
variables with upper layers where volatility prediction errors
drive inference and learning (Mathys et al., 2014). One
concrete implementation of this idea is the hierarchical Gaussian
filter (HGF; Mathys et al., 2011, 2014) which allows one to
estimate subject-specific parameters encoding an individual’s
approximation to Bayes-optimal hierarchical learning.

One property of hierarchical Bayesian models deserves
particular emphasis. This is the fact that under broad
assumptions (i.e., for all distributions from the exponential
family; Mathys, 2016), hierarchical Bayesian belief updates have
a generic form with remarkably simple interpretability: at any
given level i, belief updates!µi are proportional to the prediction
error (sent from the level below) but weighted by uncertainty or,
more specifically, a precision ratio (Figure 3). This ratio denotes
the relation between the estimated precision of the input from the
level below (e.g., signal-to-noise ratio of a sensory input) and the
precision of the prior belief. For example, in the case of the HGF,
this takes the following form:

!µi ∝
π̂i−1

πi
PEi−1 (3)

Here, the numerator of this precision ratio represents the
expected precision of the input from the level below (i.e., the
agent’s estimate of signal-to noise ratio of the input), whereas the
denominator encodes the precision of the current belief. That
is, the impact of prediction error on a belief update is smaller
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the more precise (less uncertain) the prior belief and larger the
more precise (higher signal-to-noise) the input from the level
below. Evidence from anatomical and physiological studies has
established bridges between the computational and physiological
components of this hierarchical precision-weighted message
passing: prediction error signaling via forward connections likely
rests on glutamatergic (AMPA and NMDA) receptors, prediction
signaling via backward connections probably exclusively on
NMDA receptors, while precision-weighting is assumed to draw
on mechanisms which modulate postsynaptic gain, such as
neuromodulatory (e.g., dopamine or acetylcholine) or local
GABAergic inputs (Friston, 2009; Corlett et al., 2010; Adams
et al., 2013b); for a summary, see Figure 3.

Perceptual Control Theory and Active
Inference
Predictive coding represents one particular instantiation of
the Bayesian brain hypothesis that represents an attractive
foundation for studying interoception (Seth, 2013). However,
predictive coding is limited to perception and does not
directly speak to action selection and control, which is of
fundamental importance for homeostasis. However, the link
between perception and action can be studied in the framework
of related theories which share the core ideas of predictive coding
but generalize it to action selection; these include perceptual
control theory (PCT; Powers, 1973, 1978; and active inference
Friston, 2009; Friston K. J. et al., 2010).

PCT originated from the control theoretic principles of
cybernetics (Wiener, 1948) and cognitive theories emphasizing
the self-referential structure of the brain, such as radical
constructivism (Richards and von Glasersfeld, 1979; von
Foerster, 2003). The central premise is that any adaptive system
tries to control certain quantities in the environment, q, that
are essential for the system’s existence and survival (Figure 4A).
Critically, as it can only infer the value of q through perception,
controlling q amounts to ensuring that the sensory inputs
reflecting q remain at the desired (expected) level. In other words,
the system will resist any external perturbations or disturbances
by eliciting appropriate actions that restore the expected sensory
input. This control can be exerted by the classical negative
feedback loop of cybernetics (Figure 4A), where an internal
reference (setpoint or goal signal) is compared to incoming
sensory input reflecting the state of q. The resulting mismatch
or prediction error serves to elicit actions which restore q to the
expected value. In Powers’ (1973) words: “The reference signal is
amodel [our emphasis] inside the behaving system against which
the sensor signal is compared: behavior is always such as to keep
the sensor signal close to the setting of this reference signal.”

Critically, PCT postulates that control systems are, in many
cases, structured hierarchically, where the “action” of higher
systems consists of providing the reference or goal signal for
lower systems. As a consequence, in order to reach a high-order
goal, the relevant systems level (say i) does not need to directly
access any actuators or specify a chain of commands; all it has
to do is to alter the reference signal for the next lower system
i−1. This will adjust the output from i−1 and thus the reference

FIGURE 4 | (A) Principles of classical feedback control. Figure is reproduced,

with permission, from Powers (1973). (B) A graphical summary of allostasis

and its dependence on predictions about future bodily states. Figure is

reproduced, with permission, from Sterling (2012).

signal for the next lower system i −2, and so forth, until a level
is reached whose output drives actuators and thus impacts on the
environment. Intriguingly, nowhere in this chain of downward
changes is the actual behavioral act specified; it is only the goals
(expected sensory inputs) that are re-specified at each level of
the hierarchy when the sensed environmental state does not
correspond to the goal state (reference signal) at any levels of
the hierarchy. In a nutshell, “... control systems control what they
sense, not what they do.” (Powers, 1973; his emphasis).

PCT was formulated at a time when neither the hierarchical
structure of the human brain was well understood, nor when
Bayesian ideas of perception had been well developed. These
concepts have informed a more general framework—active
inference (Friston, 2009; Friston K. J. et al., 2010)—which,
although not directly building on PCT, shares its fundamental
notion that control is hierarchically organized and directed
toward sensory input, not motor output. Active inference derives
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from the free energy principle (Friston et al., 2006; Friston,
2009, 2010) which postulates that biological agents strive to
minimize surprise about their sensory inputs. In the general case,
however, this requires integrating over all possible hidden states
of the world, a computationally intractable problem. A solution
is provided by a more easily computable quantity called “free
energy” which represents an upper bound on surprise. A free
energy minimizing system thus corresponds to a system which
experiences minimum surprise about its sensory inputs. This
notion is similar to the functional principle underlying PCT, but
is formulated in terms of probability theory and thus tied closely
to inference and generative models. The free energy principle has
found numerous applications to cognition, suggesting efficient
algorithms for how perceptual inference and learning can be
implemented by a hierarchical generative model that maps onto
the known neuroanatomy and neurophysiology of the cortex
(Friston et al., 2006; Friston, 2008, 2009; Bogacz, in press).

Notably, the brain could reduce free energy in two major ways
(Friston, 2009): (i) by updating its beliefs or expectations; this
corresponds to adjusting its generative model of sensory inputs,
as postulated by predictive coding; or (ii) by selecting those
actions which lead to sensory inputs that are in accordance with
the brain’s expectations; this is active inference. Simply speaking,
active inference suggests that predictions (prior expectations)
about sensory inputs define preferences or goals that engender
behavior (Friston et al., 2015). Similar to PCT, prior expectations
at a high-level in the hierarchy define a set point against which
current sensory input is evaluated and actions are automatically
elicited by lower levels initiated until any mismatch is eliminated.
That is, actions arise from a hierarchical cascade of changes in
expectations that eventually lead to reflex-like motor behavior
at the lowest level in order to yield the expected sensory input
(Adams et al., 2012, 2013a; Friston et al., 2015).

A HIERARCHICAL BAYESIAN VIEW ON
FATIGUE AND DEPRESSION AS
META-COGNITIVE PHENOMENA

Circuit Models of Interoception and
Homeostatic Control
Hierarchical Bayesian theories have begun to play an influential
role in the treatment of interoception and homeostatic
control. Although not specifying a particular computational
mechanism, a seminal paper by Paulus and Stein (2006)
highlighted the importance of predictive processes for
understanding interoception and its role in psychopathology,
specifically anxiety. More recently, several proposals have linked
interoception and homeostatic/allostatic control to predictive
coding and active inference (Seth et al., 2011; Gu et al., 2013;
Seth, 2013; Feldman-Barrett and Simmons, 2015).

While these proposals have remained unspecific about the
exact implementation of active inference for allostatic control,
they have incorporated anatomical and physiological knowledge
about the neuronal circuits for interoception and homeostatic
control (for reviews, see Saper, 2002; Craig, 2002, 2003;
Critchley andHarrison, 2013). Viscerosensory information about

a wide range of bodily states—including bodily integrity (pain,
inflammatory mediators), cardiovascular (e.g., blood pressure,
oxygenation), humoral (e.g., plasma osmolality), physical (e.g.,
body temperature), metabolic (e.g., levels of glucose and
hormones like insulin, ghrelin, leptin), immunological (e.g.,
cytokines), or mechanical (e.g., dilation of internal organs)
properties—reaches the brain via three main channels: visceral
afferents that enter the spino-thalamic tract via spinal cord
lamina 1, cranial nerves IX (glossopharyngeal) and X (vagus),
and humoral information which is sensed by circumventricular
organs and specialized hypothalamic neurons situated outside
the blood-brain barrier. These channels reach the thalamus
(ventroposterior and ventromedial nuclei)—either directly or
indirectly via brain stem nuclei including the nucleus of the
solitary tract, parabrachial nucleus, and periaqueductal gray—
and eventually target the viscerosensory cortex. The latter
essentially comprises posterior and mid-insular cortex which
represent a viscerotopic map of bodily state with respect to
numerous physiological variables (Cechetto and Saper, 1987;
Allen et al., 1991; Craig, 2002). Their efferent connections
convey information about bodily state to cortical visceromotor
areas—such as anterior insular cortex (AIC), anterior cingulate
cortex (ACC), subgenual cortex (SGC), and orbitofrontal cortex
(OFC)—which, in turn, send projections to hypothalamus,
brainstem and spinal cord nuclei (Mesulam and Mufson, 1982;
Hurley et al., 1991; Carmichael and Price, 1995; Freedman et al.,
2000; Chiba et al., 2001; Vogt, 2005; Hsu and Price, 2007) in order
to control autonomic, endocrine and immunological reflex arcs.

Based on this general anatomical layout, several
computationally inspired proposals have been put
forward, although so far without mathematically concrete
implementations. Seth et al. (2011) conceptualized interoception
as a predictive coding process combined with corollary
discharge. In their concept, the AIC was assigned a central
role as comparator (Gray et al., 2007) receiving corollary
discharges (efference copies) of autonomic control signals from
visceromotor regions like the ACC. Subsequent formulations
based on active inference no longer understood autonomic
control signals originating from visceromotor regions as
“commands,” but as predictions of bodily states which are fulfilled
by autonomic reflexes implemented by lower (hypothalamic and
brainstem) centers (Gu et al., 2013; Seth, 2013; Feldman-Barrett
and Simmons, 2015; Pezzulo et al., 2015).

In the following, we build on and extend the above models
to formulate a theory of fatigue that connects hierarchical
Bayesian inference tometacognition (cognition about cognition).
Specifically, we unpack and extend a mechanism proposed
recently as part of a list of priority problems for psychiatry: “With
respect to fatigue, can we identify distinct patient subgroups
in whom the brain’s model of interoceptive inputs signal
constant surprise because of persistent violation of fixed beliefs
(homoeostatic setpoints) regarding metabolic states or bodily
integrity and in whom this enduring dyshomoeostasis induces
high-order beliefs about lack of control and low self-efficacy?”
(Problem 8 in Stephan et al., 2016a). In the following, we describe
how homeostatic regulation can be regarded as a problem of
hierarchical Bayesian inference and control, not dissimilar to
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previous accounts but with three novel aspects: (i) an explicit
discussion of how conventional homeostatic concepts can be
transformed into Bayesian counterparts, including an extremely
simple but concrete illustration of how active inference could
mediate homeostatic control; (ii) the extension of active inference
to a formal definition of allostatic control; and (iii) the addition
of a metacognitive layer to the interoceptive hierarchy.

Homeostatic Control through Active
Inference As “Bayesian Reflexes”
The conventional cybernetic view of homeostasis regards the
brain’s task as ensuring that its carrier (the body) inhabits a
limited number of states which are compatible with survival,
for example, being within a narrow range of body temperature
or blood oxygenation. From a control theory perspective, this
amounts to keeping sensory signals of bodily state close to
setpoints, which are defined by a reference signal that is provided
to a comparator unit (compare the traditional cybernetic circuit
implementing feedback control in Figure 4A).

We now formulate this circuit and its components in a way
that provides a basis for extending homeostatic to allostatic
control. Under a Bayesian perspective, homeostatic setpoints can
be defined as the expectations (means) of prior beliefs about the
states the body should inhabit. These prior beliefs are instantiated
biophysically by “hard-wired” local circuits in “effector regions”
that control homeostatic reflex arcs, such as the hypothalamus,
brain stem nuclei like the periaqueductal gray (PAG), and
autonomic cell columns in the spinal cord (Craig, 2003). The
“homeostatic range” (of values compatible with life) are reflected
by prior variance: priors of vitally important variables (such as
blood oxygenation) are extremely tight (low variance), whereas
other beliefs (e.g., about blood pressure) can afford being
considerably wider (high prior variance). Notably, all of these
beliefs are subject to evolutionary pressure: depending on how
well they support homeostasis under the conditions of a given
environment and thus maintain bodily integrity and survival,
they (the neuronal structures encoding them, respectively) will
be more or less likely selected out.

Given this notion of a homeostatic setpoint as a belief
about physiological states the body should inhabit, one can
now formulate a basic homeostatic reflex arc in Bayesian
terms (Figure 5), including its control by higher-order
centers (allostasis). Specifically, we consider how a particular
physiological state x can be controlled by actions elicited by a
neuronal homeostatic reflex arc, e.g., in the hypothalamus or a
brain stem nucleus, ensuring that x is kept within a homeostatic
range (prior belief about its value). A key property of this
formulation is that corrective action is more vigorous or rapid
the higher the deviation of bodily states from prior expectations
and the more precise these expectations (the tighter the
homeostatic range). For clarity and simplicity, we only consider
a very basic scenario here. While our approach is inspired by
more general and sophisticated treatments of active inference
formulated under the free-energy principle (Friston K. J. et al.,
2010), the following derivation presents, to our knowledge, a
first mathematically concrete proposal of an active inference

FIGURE 5 | A graphical summary of a homeostatic reflex arc and its

modulation by allostatic predictions. Blue lines: sensory inputs; red lines:

prediction errors; green lines: predictions.

mechanism for homeostatic reflexes under allostatic control. We
emphasize that the following model is by no means complete, but
should be seen as a mere starting point for developing generative
models of allostatic control and metacognitive evaluation.

Let us initially begin from the perspective of perceptual
inference as Bayesian belief updating, i.e., how one could
determine the most likely value of bodily state x, given noisy
sensory input which is sampled sequentially. Here, we examine
the simplest case where x is assumed not to evolve or experience
any perturbations over the period of observation. While, in this
context, x is thus a constant state of the body, the brain’s belief
about x is updated sequentially, based on noisy sensory inputs
(Because of this subtle difference, in the following few paragraphs
on perception, we write the bodily state x as a time-invariant
variable while mean and variance of the belief about x are time-
dependent. In subsequent paragraphs on action, the opposite is
the case). This belief can be described, for example, as a normal
distribution with mean µt and precision (inverse variance) πt at
time t:

p (x) = N
(

x;µt ,π
−1
t

)

(4)

At any time t, viscerosensory input y results from some form
of neuronal coding (transformation) g of x and is affected by
inherent noise of the sensory channel (with constant precision
πdata):

p
(

y | x
)

= N
(

y; g (x) ,π−1
data

)

(5)

or, equivalently:

yt = g (x) + et (6)

p (et) = N
(

et; 0,π
−1
data

)

In this context, the goal of perceptual inference would be to
infer on the value of x given repeated samples of the noisy
viscerosensory signal y. This corresponds to updating ones’
estimates of the sufficient statistics of x (µt and πt), where
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the estimate at time t serves as the prior for the next belief
update (“today’s posterior is tomorrow’s prior”). That is, using
Bayes’ theorem, one can sequentially transform a prior belief
p
(

x;µt ,π
−1
t

)

into a posterior belief p
(

x;µt+ 1,π
−1
t+ 1

)

, based on
new sensory data yt . Specifically, this sequential belief update
would obey the following simple rule (see Mathys, 2016 for
details):

µt+ 1 = µt +
πdata

πt + πdata

(

yt − g (µt)
)

(7)

πt+ 1 = πt + πdata

Here, the posterior mean results from updating the current
estimate (prediction or prior mean) with the precision-weighted
prediction error—where the latter corresponds to the difference
between the actual sensory signal yt and its predicted value,
g (µt). The precision-weighting is critical because it renders the
correction or update sensitive to the properties of both the
sensory channel and the prior belief: the belief update is more
pronounced the higher the estimated precision of the sensory
input and the lower the precision of the prior.

We can now use the same type of precision-weighted
prediction error for influencing x, instead of inferring or sensing
it. In other words, we turn the perceptual update rule of Equation
7 into a control rule, based on two simple considerations. First,
to fix the setpoint for the homeostatic reflex, we clamp the prior
belief: ∀t : µt = µprior ,πt = πprior . This effectively corresponds
to delta function (hyper)priors on the sufficient statistics of the
prior belief (see Equation 8). Equation (7) shows that this can
be achieved by simply ignoring the sensory information (more
formally: setting the data precision to zero). Second, we define an
action or effector function whose driving force is the prediction
error under expected homeostasis; in other words, the difference
between the actual sensory input y and the sensory input that
would be expected at the homeostatic setpoint (µprior). This
prediction error can be derived from the log evidence of a
model mH which expects bodily state to be in homeostasis [and
therefore the viscerosensory input to equal g

(

µprior
)

]. This is the
case when the sufficient statistics of the marginal likelihood are
given by the homeostatic setpoint µprior and homeostatic range

π−1
prior (where c absorbs constant terms):

p
(

y|mH
)

=

∫

p
(

y|µt ,πt
)

p (µt) p (πt) dµt dπt

=

∫

N
(

y; g (µt) ,π
−1
t

)

δ
(

µt − µprior
)

δ
(

πt − πprior
)

dµt dπt

= N
(

y; g
(

µprior
)

,π−1
prior

)

L = ln p
(

y|mH
)

(8)

=
1

2

(

lnπprior − πprior
(

y− g
(

µprior
))2

)

+ c

=
1

2

(

lnπprior − πprior
(

PE
(

y
))2

)

+ c

Notably, this is the negative (Shannon) surprise S of seeing the
data under the expectation of homeostasis (compare Equation 2):

S
(

y |mH
)

= −L (9)

According to Equation (8), minimizing the precision-weighted
squared prediction error thus minimizes the interoceptive
surprise S about the sensory inputs. This requires actions that
make x maximally congruent with the homeostatic setpoint and
hence maximize log evidence L. This can be achieved by defining
action4 as the gradient of the log likelihood with regard to x
(under application of the chain rule and noting, from Equation

(6), that ∂y
∂x =

∂g
∂x ):

a (t) =
∂L

∂x

=
∂

[

− 1
2πprior

(

y (x, t) − g
(

µprior
))2

]

∂x

=
∂

[

− 1
2πpriorPE

(

y
)2

]

∂x

= −
πprior

2

∂
[

PE
(

y
)2

]

∂y

∂y

∂x
(10)

= −πpriorPE
(

y
) ∂g

∂x

and using it to smoothly adjust the value of the physiological
variable x:

dx

dt
= λ−1f (a (t)) (11)

Put differently, the chosen action a induces a gradient descent of
x on interoceptive surprise:

dx

dt
= −λ−1f

(

∂S

∂x

)

(12)

Here, λ is a time constant matched to the time scale at
which action can affect x (for example, a slow time constant
for hormonal regulation by the hypothalamus, or a very fast
time constant for cardiovascular regulation via the baroreceptor
reflex). Furthermore, for generality, Equation (11) includes a
mapping f from action to changes in x. This could be non-
linear and probabilistic to account for noise in motor processes
(compare the analogous sensory mapping g in Equation 6). The
advantage of a probabilistic formulation is that it allows for
considering “action precision,” i.e., the confidence with which
an action would have the desired effect on the physiological
variable; this will be examined in future work. In the present
simulation shown in Figure 6, we have kept f maximally simple
(a deterministic identity function).

Equations (8)–(12) specify how the effector emits actions that
move x toward its setpoint and minimize precision-weighted

4Here, we are pragmatically changing the notation of time (from index to
argument) as we find it more natural to express the action signal in continuous
time.
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FIGURE 6 | A simulated example of allostatic regulation of homeostatic control, based on Equations (8)–(12). The upper panel shows the temporal

evolution of a fictitious physiological state x (Equation 11) which is affected by environmental perturbations (❶,❸,❻; all with a magnitude of 1.5). The middle and lower

panels display an approximation to interoceptive surprise—i.e., squared precision-weighted prediction error (pwPE2; compare last line of Equation 8)—and the

associated action signal (Equation 10), respectively. Following the timeline from left to right, the homeostatic setpoint or belief is initially specified with a prior mean and

prior precision of 1 each. Please note that even before the first perturbation (❶) occurs, sensory noise (zero mean, 0.25 standard deviation) leads to ongoing actions of

minute amplitude which lead to (very small) deviations of x from the setpoint. Following a first perturbation (❶), the homeostatic reflex arc emits corrective actions that

are proportional to precision-weighted viscerosensory prediction error (middle panel). As the actions are successful, x returns to setpoint and viscerosensory

prediction error decays. ❷ indicates the beginning of allostatic control: here, the prediction of imminent future perturbations (by some generative model not specified

here) leads to an anticipatory rise in the homeostatic setpoint (a shift in the prior mean to 2). As a consequence, in the absence of any change in sensory input, actions

are elicited to change the value of x to the new setpoint. This ensures that the following perturbation ❸ does not bring x anywhere near the critical threshold. At ❹, a

safe period is predicted, and allostatic control resets the homeostatic setpoint (prior mean) to 1. At ❺, another perturbation in the near future is being predicted,

however, this time the direction of the perturbation is uncertain. Therefore, changing the mean or setpoint is not a viable option and allostatic control takes a different

form: instead of changing prior mean, the prior precision of the homeostatic belief is increased from 1 to 4. As a consequence, when a perturbation occurs at ❻, this

yields a considerably larger precision-weighted prediction error and hence greater interoceptive surprise (see lower panel), leading to a significantly more rapid

corrective action (compare the slope of signal rise between ❶ and ❻), putting the agent at less risk, should another perturbation occur shortly after ❻. It is also

noteworthy that the increased prior precision enhances the effect of sensory noise (compare the roughness of the three signals just prior to ❶ and ❻, respectively).

prediction error and thus interoceptive surprise (see middle
and lower panels in Figure 6). This makes the action signal
progressively diminish toward zero as x asymptotes its setpoint.
Notably, the vigor or speed of action depends on both the current
prediction error (discrepancy between the sensory feedback
signal and its desired/predicted level), and the precision of the
prior homeostatic belief. This means that for vitally important
physiological variables whose homeostatic ranges are very
tight, corrective actions are necessarily rapid. Conversely, when

physiological variables diverge from setpoints, the experience
of dyshomeostasis (i.e., the magnitude of prediction error) is
muchmore pronounced when prior homeostatic beliefs are tight.
Both properties are illustrated by the simple simulation shown in
Figure 6.

The above equations illustrate a key principle of active
inference: the choice between reducing prediction error through
changing predictions (updates of the generative model) or
through action depends on precision. For example, reducing the
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precision of sensory input (πdata in Equation 7) disables belief
updates while action (Equation 10) remains unaffected. Similarly,
increasing the precision of predictions or prior beliefs (πt in
Equation 7 orπprior in Equation 8) abolishes belief updating while
action is increased in proportion to the increase in precision. In
other words, a modulation of precision of top-down predictions
is sufficient to switch from learning to acting.

This section has outlined a Bayesian account of homeostatic
control. Equations (8)–(12) illustrate the role of prior beliefs for
implementing setpoints in homeostatic reflex arcs where actions
minimize prediction errors (and hence interoceptive surprise) in
order to fulfill a prior belief that physiological state x should be
within a particular range. This represents a simple but concrete
implementation of active inference in the context of homeostatic
control. Perhaps most importantly, dyshomeostasis can now be
defined formally as a persistent deviation from precise prior
expectations about bodily state that is indexed by chronically
elevated surprise about viscerosensory inputs; or equivalently, as
high entropy (average surprise) of viscerosensory channels.

One might note that entropy minimization by homeostatic
control might constitute a violation of the second law of
thermodynamics (that all systems monotonically increase their
entropy over time). However, the second law of thermodynamics
only applies to closed systems; by contrast, biological organisms
represent open systems which exchange energy and information
with their environment and are capable of decreasing entropy—
at least temporarily (Von Bertalanffy, 1969). This is the very
nature of homeostatic regulation: tomaintain the body in a highly
particular (low entropy and hence unlikely) condition.

An Active Inference Perspective on
Allostasis
A critical extension of the above scheme for homeostatic
control is to allow higher-order goals or predictions to alter
the homeostatic belief p (x). This amounts to allostasis: the
proactive deployment of behavior, guided by predictions from a
model, in order to avoid dyshomeostatic future states (Sterling,
2012; Figure 4B). For example, prolonged exposure to intense
sunlight will not only cause immediate (e.g., increase in body
temperature) but also delayed (e.g., dehydration) perturbations
of homeostasis. Provided the brain is equipped with a generative
model for predicting the evolution of environmental and bodily
states, based on previous experience, it can take proactive actions
and avoid dyshomeostatic states before they arise. Importantly,
these homeostatic goals often have a hierarchical structure, where
temporary deviations from homeostatic setpoints are tolerated or
even induced in order to ensure that higher-order homeostatic
goals can be reached in the future. For example, under a model
that predicts a possible encounter with a hostile agent in a
specific context, anticipatory deviations from hormonal and
cardiovascular setpoints are induced to prepare for future fight-
flight behavior.

From the perspective of theories like PCT or active inference,
an efficient way of accomplishing hierarchical control is to
temporarily alter the setpoint or prior belief of the relevant
homeostatic reflex arc (for example, changing the belief about

desirable plasma osmolality elicits drinking behavior before
dehydration reaches a critical level). This relies on higher
brain structures with three properties: (i) access to estimates of
bodily state (interoception), (ii) capable of generating predictions
over longer time scales, and (iii) with anatomical connections
that can modulate the homeostatic beliefs which reflex arcs in
regions like the hypothalamus or brain stem serve to fulfill.
Neuroanatomically, regions that are in a position to modulate
homeostatic reflex arcs through allostatic predictions are likely
situated at the top of the interoceptive hierarchy and include the
AIC, ACC and subgenual cortex; this is discussed in more detail
below.

The hierarchical (top-down) modulation of reflex arcs by
predictions means that (homeostatic) beliefs about desirable
bodily states in the present become dependent on (allostatic)
beliefs about bodily states in the future. This essentially turns
homeostatic beliefs into time-varying quantities under the
influence of higher allostatic predictions φi (t). This belief
transformation could affect either the mean and/or the precision
of the homeostatic belief across time:

p (x (t)) = N
(

x (t) ;µprior (φ1 (t)) ,πprior (φ2 (t))−1) (13)

Figure 6 shows a very simple simulation which illustrates both
types of allostatic control. Here, a physiological variable x is
driven away from its setpoint (the agent’s homeostatic belief)
three times, due to environmental perturbations. Each time a
“Bayesian reflex” restores homeostasis according to Equations
(8)–(12). Critically, following the first incident (❶ in Figure 6),
higher levels of the system (not modeled here) predict further
perturbations of a particular direction and allostatic control
is exerted by shifting the mean (setpoint) into the opposite
direction while leaving the precision of the homeostatic belief
unaffected (❷). As a consequence, x rises to the new expected
level. Note that this occurs without specifying the action; instead,
the action follows automatically once a new belief or setpoint
has been adopted. At ❺, perturbations are predicted, but with
uncertainty about their direction; hence shifting the setpoint
or mean is not a viable option. Instead, the precision of the
homeostatic belief is increased, leading to a smaller range of
tolerated deviations in either direction. The subsequent response
to a perturbation (❻) leads to a far swifter restorative response
than after the first perturbation (❶).

Here, we only provide a general frame for implementing
allostasis from an active inference perspective; the specific form
for themodulation of homeostatic beliefs by allostatic predictions
is likely to vary across physiological variables, as these are
controlled on different time scales and may draw on predictions
from different generative models. Generally, however, we note
that the frame suggested by Equation (13) is consistent with
the PCT notion of control where hierarchically higher levels set
the reference points for lower levels (Powers, 1973). It is also
similar in structure to active inference accounts of motor control
where primary motor cortex is assumed to modulate spinal reflex
arcs through ascending connections to α and γ motor neurons,
“programming” motor trajectories via predictions about future
proprioceptive input (Adams et al., 2013b).
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In summary, under the hierarchical Bayesian view presented
above, homeostatic and allostatic control, respectively, can be
understood as active inference about bodily states on different
time scales: actions (of a motor, autonomic, endocrine, or
immunological sort) are selected which fulfill beliefs about
current and future bodily states and reduce the average surprise
(entropy) of viscerosensory channels over time (the time scale
of the respective allostatic goal). Notably, this entropy-reducing
principle may not only be in operation during the lifetime of an
organism, but has also been suggested as the driving force behind
the evolution of homeostatic mechanisms (Woods and Wilson,
2013).

A Neuroanatomical Circuit for
Interoception, Homeostasis, and Allostasis
The extension from homeostatic to allostatic control highlights
that interoception and homeostatic regulation are inevitably
linked and form a closed loop: tuning the setpoints of
homeostatic reflex arcs depends on accurate allostatic predictions
about future bodily states; these predictions, in, turn depend
on accurate inference about current bodily states. Figure 7
summarizes the neuroanatomy of a proposed circuit for
integrating the afferent (interoceptive) and efferent (control)
branches of homeostatic/allostatic regulation. This anatomical
layout is not dissimilar to a previous proposal by Feldman-Barrett
and Simmons (2015) but introduces several novel aspects (e.g.,
a metacognitive layer) and distinguishes interoception, allostatic
predictions and homeostatic reflex arcs more explicitly.

In our proposal, AIC, ACC, subgenual cortex (SGC), and
orbitofrontal cortex (OFC)—regions we refer to as “visceromotor
areas” (VMAs) as a set—are situated at the top of this circuit,
embodying a generative model of (potentially different types of)
viscerosensory inputs that enables a biological agent to infer on
current bodily states and predict future states, as a basis for
allostatic predictions. This assumption is supported by known
anatomical connections and their hierarchical relations based on
laminar patterns of origin and target: tract tracing studies in
the Macaque monkey (Mesulam and Mufson, 1982; Mufson and
Mesulam, 1982; Vogt and Pandya, 1987; Carmichael and Price,
1995) demonstrated that VMAs receive ascending projections
from viscerosensory cortex (posterior and mid-insula). As in
circuits supporting exteroception, these ascending connections
are thought to signal prediction errors (Seth et al., 2011; Gu et al.,
2013; Seth, 2013; Feldman-Barrett and Simmons, 2015). On the
other hand, according to tract tracing studies inmonkeys and rats
(Mesulam andMufson, 1982; Hurley et al., 1991; Carmichael and
Price, 1995; Freedman et al., 2000; Chiba et al., 2001; Vogt, 2005;
Hsu and Price, 2007), the visceromotor areas possess connections
targeting hypothalamus, brain stem nuclei and spinal cord
(partially relayed by amygdala, periaqueductal gray (PAG), and
basal ganglia). These connections are thought to convey allostatic
predictions whichmodulate the setpoints of homeostatic reflexes,
as described above. Importantly, descending projections from
visceromotor areas could send the same prediction to posterior
and mid-insula; this effectively serves as efference copy or
corollary discharge against which viscerosensory inputs can

be compared. The resulting prediction errors are returned
via ascending connections to visceromotor areas, allowing for
(presumably slow) adjustment of allostatic predictions.

Several sources of uncertainty need to be highlighted here.
First, the specific roles and division of labor amongst VMAs
are largely unclear; for the moment, we have grouped them
together without any differentiation. Second, non-trivial species
differences in the neuroanatomy of interoceptive circuitry exist.
For example, SGC targets different autonomic effector regions
in rodents and monkeys (Hurley et al., 1991; Freedman et al.,
2000), and it has been questioned whether AIC and ACC in
monkeys and humans are functionally equivalent (Critchley and
Harrison, 2013). Third, the present circuit model ignores the fact
that AIC, ACC, and OFC each consist of several anatomically
distinct subfields. For example, even within agranular insular
cortex of the Macaque monkey, subareas exhibit differential
connectivity and may possess a hierarchical relation amongst
themselves (Carmichael and Price, 1996). Finally, our present
model assumes that effector regions (hypothalamus, brain stem,
spinal cord), which receive allostatic predictions from VMAs,
do not return prediction errors via ascending connections. This
serves to ensure that allostatic predictions are fulfilled by actions,
instead of these predictions being revised by prediction errors.
This fits well to the agranular cytoarchitectonic nature of VMAs,
i.e., the absence of a well-formed layer IV which represents a key

FIGURE 7 | A proposed circuit for interoception and allostatic

regulation of homeostatic reflex arcs, together with a metacognitive

layer (MC). See main text for details. Blue lines: sensory inputs; red lines:

prediction errors; green lines: predictions.
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target lamina for ascending connections conveying prediction
errors in granular cortex (cf. Feldman-Barrett and Simmons,
2015). Alternatively, as suggested by analogous active inference
schemes for motor control, this type of prediction error signal
could temporarily “switched off” or attenuated during action
execution by reducing precision (Adams et al., 2012, 2013a). It is
questionable, however, whether this proposed mechanism could
also apply to allostatic control, given the continuous presence of
interoactions and the much longer time scales on they unfold
(e.g., hormonal or immunological regulation).

Our Bayesian account of homeostatic control (see Equations
8–12 above) led to a definition of dyshomeostasis as a state of
elevated interoceptive surprise, a deviation from precise prior
expectations about bodily state that is indexed by increased
precision-weighted prediction errors about viscerosensory
inputs. The closed perception-action loop of homeostatic
inference and control shown by Figure 7 indicates that, in
addition to peripheral causes residing in the body itself,
structural lesions (e.g., due to demyelinating processes in MS) or
functional impairments (e.g., due to inflammation in depression)
in either afferent or efferent branches of this circuit could lead to
chronic dyshomeostasis. We now turn to some implications of
this view for specific domains of cognition and emotion: fatigue
and depression.

Metacognition about Interoception and
Allostatic Self-efficacy
Interoceptive surprise plausibly has general and major
consequences for cognition and emotion—even in interoceptive
domains that may be operating outside immediate awareness
(e.g., levels of certain hormones, cytokines, or metabolites).
As noted above, surprise is equivalent to negative log model
evidence, and persistently high surprise is the hallmark of
a bad model. A chronic state of perceived dyshomeostasis
indicates that the brain’s generative model of viscerosensory
inputs has low evidence—either because it generates bad
predictions or because it cannot transform them (with sufficient
confidence) into homeostasis-restoring actions. In other words,
persistently high interoceptive surprise represents a fundamental
warning sign that the brain presently cannot adequately control
perturbations of potential relevance for survival. This leads us to
a key hypothesis of this paper—that “enduring dyshomoeostasis
induces high-order beliefs about lack of control and low
self-efficacy” (Stephan et al., 2016a).

Self-efficacy is a concept of self-evaluation and behavioral
change which holds that humans not only have expectations with
regard to the outcome of chosen actions, but also self-oriented
expectations concerning whether they can successfully execute
these actions (Bandura, 1977). Self-efficacy can be defined as
an individual’s expectation of personal mastery and control:
an individual with high self-efficacy believes that he/she can
successfully perform the cognitive andmotor operations required
to overcome negative situations (e.g., obstacles, adversaries,
threats, and aversive experiences). The construct of self-efficacy
is thus closely related to concepts of metacognition (for review,
see Clark and Dumas, 2015). Theoretical and empirical work

suggests that low levels of perceived self-efficacy prevent the
deployment of adequate coping behavior and may constitute
an important component in the pathogenesis of depression and
anxiety (Rosenbaum andHadari, 1985; Bandura et al., 1996, 1999;
Arnstein et al., 1999).

While the importance of self-efficacy for adaptive behavior
and general well-being has been examined in numerous cognitive
domains, particularly with regard to learning, memory and other
academically relevant cognitive skills, the possible link of self-
efficacy to dyshomeostasis has received relatively little attention.
One exception is the area of chronic pain research, where
several studies demonstrated that perceived self-efficacy not only
modulates pain perception (Bandura et al., 1987), but crucially
determines coping behavior and quality of life, independently of
and often more strongly than physical variables, such as pain
intensity or duration (Arnstein et al., 1999; Denison et al., 2004;
Burke et al., 2015).

Here, we suggest that the metacognitive evaluation
of homeostatic/allostatic control during experienced
dyshomoeostasis5 has a major impact on self-efficacy
beliefs and the ensuing choice of actions. Importantly, as
we highlighted at the outset of this paper, this may proceed in
two sequential stages. Initially, the metacognitive recognition
that available homeostatic/allostatic control strategies fail to
reduce interoceptive prediction error may materialize through
fatigue as a subjective feeling. This resonates with the concept
of “feeling states” in the interoception literature (i.e., re-
representations of an image of bodily state; Craig, 2002) but
highlights the evaluation of action outcomes and the experience
of mastery. Importantly, this can be defined formally under our
model above: if the gradient ∂S

∂x (Equations 8–12) indicates that
interoceptive surprise is not decreasing but maintains constant
or even increases as the action is performed, this indicates
that homeostatic control fails and the available action does not
control the dyshomeostasis-causing process. Fatigue may thus
be understood as the metacognitive detection of an ongoing
but fruitless effort of regulating bodily states that may manifest
neurophysiologically as a failure to reduce incoming prediction
errors to VMAs (Figure 7).

In this context, it is worth pointing out that, under our
model, fatigue can be formally distinguished from tiredness.
In case of tiredness, for example, from prolonged physical
activity, interoceptive surprise arises from the concentration of
metabolites such as lactic acid shifted away from their setpoints.
In this case, however, a simple action is available: physical rest.
This allows muscle metabolism to restore biochemical balance,
which turns the gradient ∂S

∂x negative (Equations 8–12) and
signals restoration of homeostasis by the chosen behavior. By
contrast, in fatigue, physical rest does not have the same positive
effect. From the view of our theory, where fatigue represents a
metacognitive belief that arises from chronic experience of lack
of mastery over bodily states, it is easy to explain why rest is
not beneficial: when interoceptive surprise fails to decrease in
the absence of actions, mastery cannot be experienced and the

5In principle, of any sort—although clearly some viscerosensory domains (e.g.,
about cardiac function) may exert greater impact on self-efficacy than others.
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associated metacognitive beliefs cannot be adjusted. This may be
a reason why, in some patients, graded exercise therapy can be
helpful (Larun et al., 2016), perhaps because it gradually allows
patients to experience mastery and restore self-efficacy.

Having said this, while rest is not directly effective against
fatigue, it may not be the worst behavioral option as it prevents
inefficient actions that do not target the origin of interoceptive
surprise and would only require energy (something that in
itself induces a positive gradient ∂S

∂x ). Put differently, fatigue
could initially be an adaptive and functionally meaningful feeling
state: if presently no homeostasis-restoring action strategies are
(perceived to be) available, or the means for implementing these
strategies are lacking, it may be a rational choice to reduce
activity and save energy. Three cases may be worth distinguishing
here, depending on whether the cause of dyshomeostasis
resides in the body, the physical environment, or the social
environment, respectively. First, in case of a bodily origin of
dyshomeostasis, fatigue-driven passivity allows for saving and
reallocating energy. An example of fatigue as an early and
meaningful response to dyshomeostasis is “sickness behavior”
during acute infections (Dantzer and Kelley, 2007), which is
characterized by fatigue, lethargy, and social withdrawal. Sickness
behavior is commonly interpreted as an adaptive response
which promotes the conservation and reallocation of energy to
immunological defense processes (for review, see Shattuck and
Muehlenbein, 2015). Second, given a perceived lack of mastery
over causes of dyshomeostasis in the physical environment,
it may be a better choice to let the environment evolve and
change by itself; with some probability, this may lead to more
favorable conditions under which existing action plans can be
implemented. Third, if the cause of dyshomeostasis resides in
the social environment but cannot be influenced by actions,
a passive “wait and watch” strategy may offer opportunities
for extending the brain’s generative model—and thus scope of
possible actions—by observational learning from other agents’
behavior.

However, if none of the three positive effects described
above materialize and the experience of dyshomeostasis becomes
chronic, this may initiate a second phase characterized by
a generalization of low self-efficacy beliefs—akin to learned
helplessness (Abramson et al., 1978)—and the onset of
depression. More specifically, an agent’s experience of enduring
dyshomeostasis signals a fundamental lack of mastery and
control (over bodily states and thus survival) which may
generalize, from the allostatic domain to other cognitive domains
that are crucial for self-evaluation, planning and action selection.
This draws on previous empirical findings that subjective beliefs
of low self-efficacy can generalize beyond the specific situation
(Bandura, 1977; Burke et al., 2015) and might result in a domain-
unspecific vulnerability: the self-fulfilling expectation that one
generally lacks control and cannot deploy adequate coping
behavior in response to adverse events. In other words, an agent’s
chronic experience of dyshomeostasis may induce a generalized
sense of hopelessness, which makes any actions appear futile and
which triggers the onset of depression.

To prevent misunderstandings, we would like to emphasize
three things. First, we neither postulate a deterministic relation

between chronic dyshomeostasis and depression nor do we
claim that its aetiological importance is restricted to depression.
Instead, we regard a dyshomeostasis-induced sense of low self-
efficacy as weakening resilience to stress in general and thus a
risk factor for many forms of psychopathology. While perceived
low self-efficacy likely represents an inevitable consequence
of persistent dyshomeostasis, various protective factors may
prevent its spread to other cognitive domains and block
the generalization to hopelessness. For example, intellectual
abilities or social support may maintain a sense of mastery
that shields against an all-encompassing feeling of loss of
control. Additionally, the experience of dyshomeostasis is usually
restricted to certain bodily states but not others, leaving the
possibility of experiencing preserved allostatic mastery in some
domains. Second, we do not claim that a dyshomeostasis-
induced sense of low self-efficacy represents a single cause
for the entire depression spectrum. Instead, we propose that
it may play a particularly important role in melancholia, a
subtype of depression with pronounced somatic symptoms and
endocrine disturbances (Parker and Paterson, 2014) that differs
physiologically from other forms of depression with respect to
functional connectivity of visceromotor areas, including SGC
and ACC (Guo et al., 2016). Indeed, model-based indices of
individual interoception and allostatic control may provide a
foundation for differential diagnosis and prognosis, a theme we
return to below. Third, in its present form, our theory is not
designed to explain the full spectrum of interactions between
fatigue and depression. Longitudinal studies have shown that the
causal relation between fatigue and depression is unlikely to be
unidirectional, but that both act as independent risk factors for
each other (Skapinakis et al., 2004). Focusing on patients with
bodily conditions that cause chronic dyshomeostasis, our theory
only considers one of these directions—from dyshomeostasis
to fatigue to depression. It suggests a possible mechanism (a
“learned helplessness”-like generalization of perceived low self-
efficacy) for the progression from fatigue to depression and, as
described below, points to neurophysiological markers (in terms
of effective connectivity) that may distinguish “pure fatigue”
from the combined presence of fatigue and depression. By
contrast, our theory is less specific in offering a mechanistic
explanation for the opposite direction, i.e., how fatigue may
result from depression. However, our framework would not
be incompatible with the possibility that external triggers of
depression might instantiate false beliefs about self-efficacy
that, once fulfilled and entrenched, lead to fatigue. In other
words, in this case, the generalization of low self-efficacy
believes would proceed in the opposite direction as discussed
above, from various cognitive domains to homeostatic/allostatic
control.

Viewing fatigue and depression as sequential consequences
of the subjective belief of low self-efficacy with regard to
homeostatic/allostatic control frames them as metacognitive
phenomena. This implies that the hierarchical circuit for
interoceptive inference and homeostatic/allostatic regulation
discussed above likely represents only the lower level of a more
complex system which includes a higher metacognitive layer for
monitoring the performance of homeostatic/allostatic control
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(Figure 7). What exactly, however, is being monitored, and what
could be the anatomical basis of this metacognitive layer?

Anatomical and Computational Aspects of
Metacognition
To our knowledge, there presently exist no specific
computational models of a metacognitive system for
interoception and homeostatis/allostasis. Here, we outline
two ideas of how such a model could look like, without going
into mathematical detail. One possibility, shown in Figure 7,
is that the metacognitive level simply represents another
layer on top of the hierarchical circuit for interoception and
homeostatic/allostatic control and follows the same hierarchical
Bayesian principles. Specifically, this metacognitive layer
(metacognitive cortex “MC” in Figure 7) would encode high-
order beliefs about allostatic mastery, for example, the belief that
one is capable of responding adaptively to any perturbation one
may possibly experience. These beliefs at the metacognitive level
would then serve as predictions for the visceromotor regions,
and the allostatic processes elicited by the latter would serve
to fulfill these higher beliefs of self-efficacy. Conversely, beliefs
about allostatic self-efficacy are updated by prediction errors
communicated from the visceromotor regions.

Notably, while this type of metacognitive mechanism remains
to be established for interoception and allostasis, it has
been shown for other domains of cognition, including low-
level processes such as visual discrimination performance
(Zacharopoulos et al., 2014), that a prior belief of mastery
enhances the actual performance (for reviews, see Bandura, 1977,
1989). Additionally, the proposed generalization of perceived low
allostatic self-efficacy as a condition for the development from
fatigue to depression requires that beliefs about allostatic mastery
be broadcast beyond the circuit in Figure 7—for example, to
areas involved in metacognition about other cognitive processes
or circuits involved in regulation of mood—a process that should
be detectable via differential effective connectivity of regions
involved in metacognition about interoception and allostasis.

An alternative is that the metacognitive system not only
receives prediction error signals from the visceromotor layer
but has access to all levels in the hierarchy and monitors the
performance of the interoceptive circuit as a whole, without
influencing it. Since this circuit represents a generative model
(of viscerosensory inputs), its performance or goodness would
be indicated by the log evidence for the entire circuit (i.e., the
cumulative negative surprise across all levels). A key question
here is over what time window (into the past) this assessment
takes place. Given a chosen time window, accumulated log
evidence could be approximated by the integral of free energy,
a quantity known as “free action” (Friston K. et al., 2010).

Turning to the neuroanatomy of metacognition, possible
anatomical substrates have been investigated for several cognitive
domains, in particular (extero)perceptual performance or
memory (Shimamura and Squire, 1986; Schnyer et al., 2004;
Fleming et al., 2010, 2012, 2014; McCurdy et al., 2013), but not,
to our knowledge, for interoception or homeostasis/allostasis.
Studies explicitly focused on metacognition of interoception are

largely restricted to behavior (Garfinkel et al., 2015), with few
neurophysiological investigations (but see Canales-Johnson et al.,
2015). For other domains of cognition, such as exteroception or
memory, the anterior prefrontal cortex (roughly corresponding
to Brodmann’s area 10) has been identified as a key area for
metacognition by several neuroimaging and lesion studies (for
review, see Fleming and Dolan, 2012). While the exact evaluative
or monitoring mechanisms this region may perform are not
well understood, the individual capacity for metacognition
(of perceptual decision-making and memory) is reflected by
functional connectivity (Baird et al., 2013).

By contrast, the involvement of anterior prefrontal cortex in
metacognition of interoception has, to our knowledge, received
little if any attention to date. Two empirical findings indicate that
anterior prefrontal cortex is not an entirely implausible candidate
region. First, it is known to exhibit functional connections with
all key viscerosensory and visceromotor cortical regions of the
circuit in Figure 7 (Baird et al., 2013). Second, tract tracing
studies in the monkey demonstrated the existence of many of
the structural connections implied by the first option described
above, including direct (and largely reciprocal) connections from
AIC, ACC and SGC to medial prefrontal pole (area 10m;
Carmichael and Price, 1996). Further evidence for anatomical
connections between anterior prefrontal cortex and ACC as well
as OFC was provided by human diffusion-weighted imaging (Liu
et al., 2013).

Alternatively, the metacognitive layer may be represented
within one of the visceromotor regions such as AIC or ACC;
more specifically, within the hierarchically highest of their
various subfields (cf. Carmichael and Price, 1996). For the ACC
in particular, this possibility draws support from neuroimaging
investigations that have provided evidence for a role of ACC in
metacognitive functions such as performance monitoring and
conflict detection (Carter et al., 1998; Botvinick et al., 1999).

Empirical Support for the Hypothesis and
Future Tests of Its Predictions
Above, we described our central clinical hypothesis with regard to
the pathogenesis of fatigue and depression. In brief, we outlined
how fatigue can be seen as an initial adaptive response to the
metacognitive diagnosis of low allostatic self-efficacy; and how
the chronic experience of dyshomeostasis may trigger a second
phase in which beliefs about low self-efficacy generalize, inducing
an abstract sense of lack of control and an all-encompassing sense
of hopelessness. While direct tests of key predictions from this
hypothesis remain to be performed, some empirical data support
the plausibility of our proposal.

First, various studies indicate that the expression of fatigue
and depression are associated with lesions or impairments
of areas from our circuit model. For multiple sclerosis,
(Hanken et al., 2014) reviewed neuroimaging studies relating
fatigue to structural and functional properties of insula, ACC,
and hypothalamus6. Additionally, neuropathological studies

6We would like to add the cautionary note that in MS research the literature on
MRI-based morphometric studies shows striking variability (see Popescu et al.,
2016).
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reported a high proportion of patients with inflammatory
and demyelinating lesions of the hypothalamus, with indices
of altered HPA activity (Huitinga et al., 2001, 2004). Most
convincingly, neuropathological work focusing on cortex showed
that in multiple sclerosis gray matter lesions are present
throughout the entire cortex, but particularly frequently in
cingulate and insular cortex (Haider et al., 2016). Concerning
depression, Avery et al. (2014) examined non-medicated patients
with fMRI and found that mid-insula activity during an
interoceptive attention task was negatively correlated with the
severity of depression and somatic symptoms; additionally
functional connectivity during unconstrained cognition (rest)
between mid-insula and SGC, OFC and amygdala was increased
in patients and correlated with depression severity. Beyond the
insula, neuroimaging has long identified SGC as a candidate site
of primary pathophysiological importance in depression (Drevets
et al., 1997; Mayberg et al., 1999). This region has a key role
for inhibiting the amygdala and the sympathetic nervous system
(Gold, 2015), which may be compromised by inflammatory
processes (Miller and Raison, 2016).

Evidence from interventional studies is particularly worth
noting. For example, in several elegant studies using MRI
and PET in conjunction with typhoid vaccination to induce a
peripheral immunological response and inflammation, Harrison
and colleagues provided compelling evidence for structural and
functional changes in posterior insula, anterior insula, and ACC
(Harrison et al., 2009a,b, 2015). Importantly, they showed that
inflammation-induced activity changes in posterior insula and
ACC were associated with subjectively perceived fatigue, while
activity changes in SGC predicted mood changes. Additionally,
an fMRI study of patients receiving interferon-α treatment for
hepatitis reported an abnormal increase in ACC activity during
visuo-spatial attention (Capuron et al., 2005).

Second, clinical studies have demonstrated a striking link
between fatigue and the occurrence of dyshomeostasis-inducing
autonomic nervous system disorders (e.g., Stewart, 2000).
Specifically, in MS patients, various measures of autonomic
dysfunction correlate strongly with individual fatigue levels
(Flachenecker et al., 2003; Cortez et al., 2015). However, to
our knowledge, none of these studies examined metacognition
about interoception or homeostasis/allostasis. Maher-Edwards
et al. (2011) showed that metacognitive factors (including need
for control of thoughts) predict individual levels of fatigue
symptoms in CFS; however, the metacognitive assessment did
not specifically consider interoception. Delgado-Pastor et al.
(2015) did focus on metacognition of interoception and showed
that increasing metacognitive abilities about interoception (by
mindfulness-based interoceptive training) reduced worry more
than increasing metacognition about other cognitive processes;
however, this study did not specifically examine fatigue.

Generally, research on metacognition of interoception and
homeostasis/allostasis has been relatively sparse so far (but see
Khalsa et al., 2008; Garfinkel et al., 2015), and our hypothesis
will require testing by specifically designed future studies.
These studies will need to span four domains: behavioral-
physiological studies that (i) confirm the proposed mediating
role of metacognition in the link between dyshomeostasis and
fatigue/depression; and computational neuroimaging studies that

(ii) verify the operation of hierarchical Bayesian principles
in interoceptive circuitry, (iii) demonstrate the plausibility of
a metacognitive layer on top of the established circuits for
homeostatic control, and (iv) demonstrate the existence of
subgroups of patients in which the expression of fatigue and
depression is predicted by a disturbance in either the afferent
(interoceptive), efferent (control) or metacognitive branches of
this system.

Importantly, testing the last three implications of our
hypothesis requires mathematical models that can infer,
from individual neurophysiological data, trial-wise precision-
weighted predictions and prediction errors about viscerosensory
inputs and how they dynamically alter connection strengths
in interoceptive circuits—while respecting the layer-specific
patterns of ascending (prediction errors) and descending
(predictions) connections in cortical hierarchies (cf. Friston,
2008; Feldman-Barrett and Simmons, 2015). This brings
us to analyses of functional and effective connectivity and
methodological extensions of existing methods that are required
to test our hypotheses.

EXTENDING MODELS OF EFFECTIVE
CONNECTIVITY

Functional connectivity refers to statistical dependencies between
neurophysiological timeseries. It can be indexed by numerous
statistical approaches, e.g., correlation analysis, autoregressive
models, principal or independent component analysis (PCA,
ICA) (Friston, 2011). Although advanced measures of functional
connectivity can unearth directed influences (Friston et al.,
2013; Seth et al., 2013), by itself functional connectivity does not
disclose the mechanisms by which the measured signals were
caused and may be vulnerable to confounds at the measurement
level.

By contrast, other approaches are based on a forward model
from hidden brain states to experimental measurements. These
models do not strive for statistical characterizations of the data,
but try to disambiguate alternative explanations of the data. Here,
the focus is on effective connectivity, i.e., the “experiment- and
time-dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between recorded
neurons” (Aertsen and Preißl, 1999).

One approach to effective connectivity is provided by
biophysical network models (BNMs; Honey et al., 2007; Jirsa
et al., 2010; Woolrich and Stephan, 2013). BNMs consist of
numerous (typically 102–103) neuronal network nodes, each of
which is represented by a neural mass or mean field model
of local neuronal populations. These nodes are connected
by anatomical long-range connections (often informed by
diffusion-weighted imaging data), and the resulting network
activity is translated into node-specific measurements through
an observation model. While their biological level of detail
is attractive, a major limitation of BNMs is that their high
degree of complexity renders the estimation of connection-
specific parameters challenging (for review, see Stephan et al.,
2015). Present BNMs only allow for a very limited number of
parameters to be estimated, e.g., a single global scaling factor of
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connection strength (Deco et al., 2013). By contrast, testing our
hypotheses requires models that provide fine-grained inference
on different connections in hierarchical circuits for interoception
and allostatic control (e.g., signaling of prediction errors along
ascending connections originating in supragranular layers). In
the future, this may be overcome by ongoing efforts to turn
BNMs into fully generative models, with priors for different
types of parameters, and importing advanced methods for model
inversion from other approaches (for a discussion of this trend,
Deco and Kringelbach, 2014; Stephan et al., 2015).

Fortunately, fully generative models are already available
which fulfill many (albeit not all) of the requirements for testing
the implications of our hypothesis, for example, dynamic causal
modeling (DCM). Introduced in 2003 for fMRI data (Friston
et al., 2003), DCM rests on a state space formulation and
partitions the likelihood function (forward model) into two
hierarchically related layers: while bilinear differential equations
describe the dynamics of hidden (unobservable) interacting
neuronal populations, a static observation equation transforms
the ensuing mass activity of each population separately into a
measurable signal. Inverting this model allows for inference on
the effective connectivity among regions of interest, and how it is
modulated by experimentally controlled conditions. Subsequent
extensions have considered non-linear (Stephan et al., 2008)
and stochastic differential equations (Li et al., 2011), which
enable DCM to account for dynamic gain effects at synapses
and intrinsic fluctuations, respectively. Similarly, extensions to
the frequency domain allow for inference on connectivity from
measurements during unconstrained cognition (also known as
“resting state”) (Friston et al., 2014a).

The bilinear terms in DCM for fMRI allow for representing
trial-wise modulation of connection strengths; this makes it
well-suited for studying how connection strengths vary as a
function of trial-by-trial prediction errors, where the latter are
typically derived from a separate model applied to behavior or
stimuli (e.g., den Ouden et al., 2010). However, extending this
to interoceptive prediction errors and their role in hierarchically
structured circuits faces several non-trivial challenges. First, while
it is easy to induce prediction errors in exteroceptive paradigms,
this is less trivial in the interoceptive domain, particularly in a
way that is non-invasive and patient-friendly. With the exception
of manipulations of inspiratory breathing load (Paulus et al.,
2012), we presently lack non-invasive methods to do so, and new
paradigms will need to be developed. An alternative option is to
extract prediction errors from naturally occurring irregularities
in bodily rhythms (e.g., variations in heartbeat intervals); this
will be presented in future work. Second, existing formulations
of DCM only consider a coarse representation of neuronal
populations and do not, for example, differentiate between
different layers and layer-specific connections. Thus, they lack the
anatomical specificity required to fully test the above predictions.
With the advent of high-fieldMRI, it is now possible, in principle,
to obtain sufficiently high resolution that separate cortical layers
can be imaged in humans (e.g., Koopmans et al., 2010; Olman
et al., 2012). For example, consistent with predictive coding, a
recent study was able to decode contextual information from
superficial laminae of parts of primary visual cortex that did not
receive direct “bottom up” input but which plausibly received

top-down predictions from hierarchically higher regions (Muckli
et al., 2015).

However, signals in upper cortical layers are contaminated
by blood draining effects from lower layers. This confounds
the identification of layer-specific activity and connections and
requires adapting generative models of fMRI data. While a first
model was recently developed to account for these layer-specific
hemodynamic effects (Heinzle et al., 2016), this is so far restricted
to the level of a single region, and further work is required to
extend this to a network-level DCM.

DCM has also been formulated for M/EEG data, serving
to explain a variety of data features such as event-related
potentials (David et al., 2006), induced responses (Chen
et al., 2008), or steady-state responses (Moran et al., 2009).
The rich temporal information in M/EEG data allows for
modeling far more detailed circuit architectures than DCM
for fMRI. Specifically, DCM for M/EEG considers columnar
cortical units which consist of different types of neurons
(pyramidal cells, excitatory and inhibitory interneurons) and
communicate through synaptic connections with laminar
specificity. This allows for differentiating between the different
type of connections (ascending and descending) in cortical
hierarchies, as required to test for specific effects of predictions
and prediction errors. However, existing formulations of DCM
for M/EEG are fitted to averaged data (e.g., event-related
potentials) and only consider modulatory effects across different
experimental conditions. To test our hypotheses, extensions are
needed which account for trial-wise prediction error effects
on connections. The poor signal-to-noise ratio of single-trial
recordings poses a serious challenge for modeling (Brodersen
et al., 2011) and may require adapting hierarchical (empirical
Bayesian) estimation schemes (Friston et al., 2016; Raman et al.,
2016) to single-trial scenaria as well as sampling schemes for
model inversion in DCM; the computational costs of the latter
may require moving to GPU-based numerical schemes (Aponte
et al., 2016).

A third extension of generative models could move beyond
the current formulations of DCM altogether and considermodels
that are less directly connected to physiology, but are capable of
modeling perceptual inference within trials and learning (belief
updates) across trials. This could encompass generative models
of trial-wise M/EEG responses where, for example, trial by trial
amplitudes are predicted as a linear mixture of prediction errors
(Lieder et al., 2013). Alternatively, hierarchically structured
predictive coding circuits (Friston, 2005; Bogacz, in press) could
be used to analyse trial-wise electrophysiological data, allowing
for a closer connection to physiology.

In summary, while existing generative models of
neuroimaging data provide a crucial platform for testing
our hypothesis, no existing model fully meets the requirements
and several extensions will be required.

DIFFERENTIAL DIAGNOSIS OF FATIGUE
AND DEPRESSION

If the key predictions from our hypothesis are found to be correct
and if a generativemodel of neuroimaging or electrophysiological
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measurements of the interoceptive-allostatic circuit in Figure 7
could be established, this might have important implications for
the clinical management of fatigue and depression, in particular
differential diagnosis. Specifically, comparing alternative models
of effective connectivity could help disambiguate different
origins of circuit dysfunction leading to fatigue and depression,
respectively.

The circuit model displayed by Figure 7 highlights
that fatigue could result from functional disturbances or
structural lesions—such as local inflammatory or demyelinating
processes—in very different locations. According to our circuit
model, the experience of chronic dyshomeostasis may be due to
an initial pathology at the level of:

(i) “sensors” (viscerosensory areas)—corresponding to the
“illusion” of dyshomeostasis,

(ii) “allostatic predictors” (visceromotor regions)—equivalent
to flawed predictions of bodily states,

(iii) “effector” regions (hypothalamus, brainstem, spinal cord)—
that is, at the level of homeostatic reflex arcs,

(iv) in the body itself—for example, a disease process that evades
attempts of homeostatic regulation by (at least initially)
intact cerebral circuits (e.g., autoimmunological processes
or cancer),

(v) at the metacognitive level—in this case, insufficient
regulation of bodily states would be the consequence, not
the cause, of beliefs about low allostatic self-efficacy.

This suggests that patients with fatigue and depression,
respectively, could be classified into several subgroups that
differ in terms of the location as well as the type of disease
mechanism. While a disturbance at any of the above locations
will lead to compensatory changes throughout the entire
circuit, the resulting patterns of effective connectivity might
be distinguishable, particularly in the context of homeostatic
perturbations. Notably, in internal medicine, differential
diagnosis with regard to compensatory changes in feedback
circuits is commonplace, such as distinguishing metabolic and
respiratory origins of acidosis, or identifying hypothalamic,
pituitary or peripheral causes for endocrine dysfunction. In
our approach, such differential diagnosis could be implemented
formally by model selection, i.e., evaluating the evidence
of different models that assume a disturbance at different
branches and are fitted to electrophysiological or fMRI
data from an individual patient (cf. Stephan et al., 2016a).
We will examine this possibility in future work, simulating
circuit activity under different types of lesions and different
perturbations7.

The first of the cases described above deserves special
consideration: when there is initially no real state of
dyshomeostasis, but dyshomeostasis is only subjectively

7A separate potential subgroup is worthmentioning that also relates to a concept of
homeostasis but is distinct from our hypothesis. In some patients, fatigue and/or
depression may not result from a metacognitive reaction to a (perceived or real)
chronic state of dyshomeostasis, as our hypothesis states, but represent the result
of fulfilling a high-order belief (and thus represent a state of homeostasis)—for
example, that one deserves a socially inferior position along with exhaustion and
sadness.

perceived due to damage to viscerosensory pathways. For
example, in MS, lesions frequently affect insular cortex
(Haider et al., 2016); this “broken sensor” would create PE
signals (interoceptive surprise) that would be interpreted
by visceromotor regions as bodily dyshomeostasis. As the
emitted control actions cannot reduce interoceptive surprise, a
metacognitive interpretation ensues that leads to the subjective
feeling of fatigue, as discussed above. This case of an “illusion” of
dyshomeostasis illustrates that fatigue is always an interpretation
of perceived (not necessarily real) dyshomeostasis. This may
apply beyond interoception in that fatigue could also result
from other forms of surprise that are not reduced by adequate
actions. For example, brain damage outside interoceptive
pathways can invoke general changes in performance levels,
for example, slowing of cognitive and motor acts due to
demyelination and hence reduced conduction speed in MS.
The metacognitive detection of such a general slowing of
cognition and action, and the experience that adequate actions
(in this case, rest) do not reduce surprise about performance
levels (metacognitive surprise), may lead to a similar sensation
of fatigue as when caused by bodily dyshomeostasis. This
suggests that when primary brain diseases do not impair
interoception or allostatic control (e.g., cases of stroke or MS
outside viscerosensory/visceromotor regions) may also induce
a subjective sensation of fatigue by means of a metacognitive
mechanism.

An additional possible reason for dysfunction of the
interoceptive-allostatic circuit must be highlighted: aberrant
neuromodulatory input. Monoaminergic brain stem nuclei are
in receipt of viscerosensory inputs and project to many, if
not all, components of the interoceptive-allostatic circuit in
Figure 7 (Craig, 2003; Critchley and Harrison, 2013). There
is now considerable evidence that one possible cause of
fatigue is an impairment of these monoaminergic brainstem
projections with reduced availability of dopamine, serotonin
and noradrenaline at their (sub)cortical target sites (for review,
see Dantzer et al., 2014). This can be caused by inflammatory
processes—not only of intra-cerebral origin, but also due to
chronic peripheral inflammatory processes which, through well
understood biochemical cascades, lead to reduced synthesis of
dopamine, serotonin and noradrenaline in brainstem neurons
(Dantzer et al., 2014). In the context of the theory proposed in this
paper, a reduced dopaminergic supply in particular may impact
on the precision ratio which governs the weighting of prediction
errors (compare Equations 3, 6). This is because various
neurophysiological studies in humans and animals indicate that
one of the computational quantities encoded by variations in
dopamine release is uncertainty (inverse precision) (Fiorillo
et al., 2003; de Lafuente and Romo, 2011; Hart et al., 2015;
Schwartenbeck et al., 2015a; Tomassini et al., 2016). Notably,
many if not all regions of the interoceptive circuit in Figure 7,
are characterized by a high density of dopaminergic receptors
and terminals across all cortical layers; this is particularly well-
established for visceromotor regions like AIC, ACC, or OFC
(Gaspar et al., 1989; Hurd et al., 2001; Lewis et al., 2001). The
role of dopamine for viscerosensory (posterior insula) regions is
less well established but in situ hybridisation studies point to the
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existence of dopamine receptormRNA in human posterior insula
as well (Hurd et al., 2001).

An interesting corollary of our hypothesis is that, in
principle, the chronic disturbance of any homeostatically critical
physiological variable in any direction has the potential of
inducing fatigue and depression. This is consistent with the
fact that chronic diseases of very different nature that do not
directly affect the brain are frequently accompanied by fatigue
and depression (e.g., hepatitis, cancer, diabetes, fibromyalgia)—
and may explain the counterintuitive observation that this
includes endocrine and metabolic disorders which enhance
(rather than decrease) the metabolic availability of energy
und the activation/excitability levels of numerous tissues, e.g.,
hyperthyrodism, Cushing’s syndrome, or hypercalcemia (Kaltsas
et al., 2010).

Finally, while the present work has focused exclusively on
interoception and bodily homeostasis/allostasis, it may be seen as
a prelude to a wider concept of what one might call “generalized
allostasis”: the active inference notion that humans have setpoints
(hold beliefs) with regard to many aspects of the physical, social
and cognitive world; that they try to reach these setpoints (fulfill
these beliefs) by adequate actions; and that they can, in principle,
prospectively adjust these setpoints in order to elicit actions.
Here, one key issue is that reaching one specific setpoint may
compromise one’s ability to reach another. For example, holding
negative beliefs about states of the world (cf. “depressive realism”;
Alloy and Abramson, 1988) could be seen as an allostatic change
of setpoint that renders bad outcomes expected and should
therefore lead to future homeostasis. However, this may come at
the cost of violating higher setpoints, such as a belief that one
expects to have a certain capacity for control, or that protective
forces should exist in the world (e.g., caring other agents).
Similarly, ensuring one’s own bodily homeostasis can conflict
with beliefs about other aspects of the world, and there are ample
empirical demonstrations of humans’ willingness to forego bodily
homeostasis and sacrifice themselves in order to fulfill beliefs that
transcend their own existence—for example, beliefs that loved
ones should be protected or that certain religious principles must
be upheld. This raises the interesting question what, ultimately,
the highest setpoint or belief is that dictates the behavior of
individual humans.

CONCLUSIONS

This paper contains three main contributions. First, we
revisited how traditional homeostatic concepts can be merged

with Bayesian perspectives on interoception, leading to
formal definitions for dyshomeostasis (chronically enhanced
interoceptive surprise, or, equivalently, low evidence for
the brain’s generative model of viscerosensory inputs) and
allostasis (the change in prior beliefs which define setpoints
of homeostatic reflex arcs). Second, these definitions allowed
for a bridge to metacognition and the postulate that the
performance of the interoceptive circuit is being monitored
by a higher metacognitive layer, possibly located in anterior
prefrontal cortex, which encodes and updates beliefs about the
brain’s capacity to successfully regulate bodily states (allostatic
self-efficacy). Third, we suggested a two-stage process where
fatigue might represent an initial adaptive response to the
metacognitive diagnosis of low allostatic self-efficacy, while
the enduring experience of dyshomeostasis may initiate a
second phase in which low self-efficacy beliefs generalize,
leading to an all-encompassing sense of lack of control and
hopelessness.

The perspective offered by this paper may be useful to
further our understanding of the pathogenesis of fatigue,
and how it may be understood as a high-level interpretation
of the brain in monitoring its own efforts to control a
vital part of its environment, the body. We hope that this
theoretical framework and the methodological extensions of
models of effective connectivity it suggests will eventually
lead to applications of diagnostic utility, in particular, for
stratifying patients from spectrum diseases in whom fatigue and
hopelessness are leading symptoms, such as multiple sclerosis or
depression.
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