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Computational modelling and the inferential brain

Bayes' Theorem
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Stephan et al. (2016), Front. Hum. Neurosci., 10:550



“Every good regulator of a system must be a model of that
system” (Conant & Ashby, 1970)

Abstract:

«The design of a complex regulator often includes the making of a model of the system
to be regulated. The making of such a model has hitherto been regarded as optional, as
merely one of many possible ways.

In this paper a theorem is presented which shows, under very broad conditions, that
any regulator that is maximally both successful and simple must be isomorphic with
the system being regulated. (The exact assumptions are given.) Making a model is thus
necessary.

The theorem has the interesting corollary that the living brain, so far as it is to be
successful and efficient as a regulator for survival, must proceed, in learning, by the
formation of a model (or models) of its environment.»



What the inferential brain does: Bayesian inference

* «Bayesian inference» simply means inference on uncertain quantities
according to the rules of probability theory (i.e., according to logic).

* Agents who use Bayesian inference will make better predictions (provided
they have a good model of their environment), which will give them an
evolutionary advantage.

« We may therefore assume that evolved biological agents use Bayesian
inference, or a close approximation to it.

* But how can we reduce Bayesian inference to a simple algorithm that can
be implemented by neurons?



Before we return to Bayes: a very simple example of
updating in response to new information

Imagine the following situation:

You're on a boat, you're lost in a storm and trying to get back to shore. A
lighthouse has just appeared on the horizon, but you can only see it when
you're at the peak of a wave. Your GPS etc., has all been washed overboard,
but what you can still do to get an idea of your position is to measure the angle
between north and the lighthouse. These are your measurements (in degrees):

76,73,75,72,77
What number are you going to base your calculation on?

Right. The mean: 74.6. How do you calculate that?



Updating the mean of a series of observations

The usual way to calculate the mean x of x4, x5, ..., x;, is to take

Xi

-

1
X = —
n
=1

This requires you to remember all x;, which can become inefficient. Since the
measurements arrive sequentially, we would like to update X sequentially as
the x; come in - without having to remember them.

It turns out that this is possible. After some algebra (see next slide), we get

Xn+1 = Xp + (xn+1 - fn)

n+1



Updating the mean of a series of observations

Proof of sequential update formula:

n+1 n n
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Updating the mean of a series of observations

The seqgential updates in our example now look like this:

1 _
%y =746+ (72— 746) = 74

1
o _ 1
X =76+ 5(73-76) =745 X5 =74+ (77 = 74) = 746

1 _
X3 =745+ 5 (75— 74.5) = 746



What are the building blocks of the updates we’ve just seen?

new input

prediction error

prediction

weight (learning rate)

[s this a general pattern?
More specifically, does it generalize to Bayesian inference?

Indeed, it turns out that in many cases, Bayesian inference can be based on
parameters that are updated using precision-weighted prediction errors.
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Updates in a simple Gaussian model

Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference.

Before we make the next observation, our belief about the true value of the parameter 9 can be
described by a Gaussian prior:

p(¥) ~ N (pg,mg")

The likelihood of an observation x is also Gaussian, with precision m; :

p(x|9) ~ N, m: )

Bayes’ rule now tells us that the posterior is Gaussian again:

p(x[9)p(9)
[ p(x[9")p (") dY’

p(@|x) = ~ N(mer 7T5|1x)
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Updates in a simple Gaussian model
Here’s how the updates to the sufficent statistics u and m describing our belief look like:

TY|x = Ty + 1,

— prediction error
Hope = ks
prediction Welght (learnlng rate): ow much we re learning nere

how much we already know

The mean is updated by an uncertainty-weighted (more specifically: precision-weighted)
prediction error.

The size of the update is proportional to the likelihood precision and inversely proportional to the
posterior precision.

This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian updates
for all exponential families of likelihood distributions with conjugate priors (i.e., to all formal
descriptions of inference you are ever likely to need).
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Reduction to mean updating

Reminder (Gaussian update):

e Uz

(x — pg) = py + (x — 1y)

= +
Hy|x = K9 o Ty + 1T,

Reducing by m.the fraction of precisions that make the learning rate, we get

Hojx =ty + 75— (X — fy)

7_[E+1

As we shall see, this is the equation for updating an arithmetic mean, but with the number of

observations n replaced by 7;—’9.
&

This shows that Bayesian inference on the mean of a Gaussian distribution entails nothing more

than updating the arithmetic mean of observations with 7;—‘9 =:v as a proxy for the number of
&€

prior observations, i.e. for the weight of the prior relative to the observation.

13



Generalization to all exponential families of distributions

Many of the most widely used probability distributions are families of exponential distributions.

For example, the Gaussian distribution is an exponential family of distributions (and so are the beta,
gamma, binomial, Bernoulli, multinomial, categorical, Dirichlet, Wishart, Gaussian-gamma, log-Gaussian, multivariate Gaussian,

Poisson, and exponential distributions, among others). This means it can be written the following way.

p(x[9) = h(x) exp(m(I) - T(x) — A(F)) =

with

1 <_ (x — u)2>
V2no P 20

T u?> Ino

1 1
x=x 9= o), A== n®)= (g,—%) L T@=G?, A®) =S+ 20

This allows us to look at Bayesian belief updating in a very general way for all exponential
families of distributions.
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Generalization to all exponential families of distributions
(Mathys, 2016)

Our likelihood is an exponential family in its general form:

p(x[9) = h(x) exp(m(I) - T(x) — A(9))

The vector T(x) (a function of the observation x) is called the sufficient statistic.

For the prior, we may assume that we have made v observations with sufficient statistic ¢:

p(ﬂ|f, V) = Z(f, V) exp(v(n(t‘)) - & — A(ﬂ))) (where z(§,v) is a normlization constant)

It then turns out that the posterior has the same form, but with an updated ¢ and v replaced with
v+ 1:

p@Ix,§v) = 2(§, v + D exp((v + D@E) - § — A(¥)))

1
4 =f+v_|_—1(T(x)—f)
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Proof of the update equation

posterior likelihood  prior

p(dx,§,v) x p(x|9) p(II§,v)

= h(x) exp((®) - T(x) — A@))z(§,v) exp(v(n(®) - § — A(9)))
x exp(n(®) - (T(xX) +v§) — (v + DA))

1
= exp ((v +1) <n(19) = (TG +v§) — A(ﬂ)))

= exp ((V +1) <11(19) . (f + ﬁ(T(x) +véE-(v+ 1)E)> — A(ﬁ)))

= exp ((v +1) <n(t9) - (E b (T - E)) : A(ﬂ)))
=:&r

= p®lx§v) = z(§,v) exp (V(1(9) - § - A®)))

with v =v + 1, §&=¢ +ﬁ(7‘(x) -§

g-e.d.

16



Some examples

Univariate Gaussian model with unkown mean but known precision (our example from the
beginning):

T(x) =x
This means updating beliefs about the mean simply requires tracking the mean of observations

Univariate Gaussian model with unkown mean and unkown precision:

T(x) = (x,x*)"

Updating beliefs about both mean and precision of a Gaussian requires tracking the means of
observations and squared observations; this amounts to the first and second moments by which a
Gaussian distribution is fully characterized.

o : T
In the multivariate Gaussian case we have T (x) = (x, xxT)

17



Some examples

Bernoulli model (one out of two possible outcomes, coded as 0 and 1; e.g., coin flipping):

T(x) =x

The prior here turns out to be a beta distribution corresponding to v pseudo-observations with
mean ¢. All we need to do to get the posterior (i.e., to update our belief) is to update the mean as
new observations come in.

Categorical model (one out of several possible outcomes, with the observed outcome coded as 1,
the rest as 0)

T(x) =x

The prior and posterior here are Dirichlet distributions, and again, all we need to do to update
beliefs that have a Dirichlet form is to track the means of observed succeses (1) and failures (0).

18



Some examples
Beta model (an outcome bounded between 0 and 1):

T(x) = (Inx,In(1 —x))T

Gamma model (an outcome bounded below at 0):

T(x) = (Inx,x)T

19



... SO In sum:

... we have dealt (among others) with beliefs about states that are
* binary (Bernoulli)

* categorical

* bounded on both sides (beta)

* bounded on one side (gamma)

e and unbounded (Gaussian)

This includes most kinds of states we can have beliefs about. Notably,

« All Bayesian (i.e., probabilistic, rational) updates of such beliefs take the form of
precision-weighted prediction errors.

* These prediction errors and their precision weights are easy to compute.

* The prediction errors are simple functions of inputs.

20



Limitations

Examples of distributions that are not exponential families: Student’s ¢, Cauchy

* These distributions are popular because of their «fat tails». However, fat tails can
also be achieved with appropriate hierarchies of Gaussians (cf. the hierarchical
Gaussian filter, HGF)

A further kind of distributions that are not exponential families are found in
mixture models.

e Such models are popular because of they provide multimodal distributions. But
again, appropriate hierarchies of distributions may save the day.

21



How to reveal the precision-weighting of prediction errors
when simple exponential-family likelihoods will not do

* Formulate the problem hierarchically (i.e., imitate evolution: when
it built a brain that supports a mind which is a model of its
environment, it came up with a (largely) hierarchical solution)

* Separate levels using a mean-field approximation

* Derive update equations

 Example: HGF

22



Neurobiology: predictive coding (e.g., Friston, 2005)

A feedforward: error signal error signal error signal
: !
input predictive estimator predictive estimator
inhibition T |
feedback: prediction prediction prediction

B Forward prediction error

Backward predictions

23



But: does inference as we'’ve described it adequately
describe the situation of actual biological agents?

Agent | World No, the dynamics
are missing!

Sensory input

Inferred
hidden states

True
hidden states

Action
| 24



What about dynamics?

Up to now, we've only looked at inference on static quantities, but biological
agents live in a continually changing world.

In our example, the boat’s position changes and with it the angle to the
lighthouse.

How can we take into account that old information becomes obsolete? If we
don’t, our learning rate becomes smaller and smaller because our eqations
were derived under the assumption that we’re accumulating information
about a stable quantity.

25



What's the simplest way to keep the learning rate from
going too low?

Keep it constant!

So, taking the update equation for the mean of our observations as our point of departure...

Xn = Xp_q + E (xn - fn—l)r

.. we simply replace % with a constant a:
Hn = Pn-1 + a(n — 1)

This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that led
Rescorla & Wagner (1972) to their formulation].
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Does a constant learning rate solve our problems?

Partly: it implies a certain rate of forgetting because it amounts to taking only
1 .
then = . last data points into account. But...

... if the learning rate is supposed to reflect uncertainty in Bayesian inference,
then how do we

(a) know that a reflects the right level of uncertainty at any one time, and
(b) account for changes in uncertainty if a is constant?

What we really need is an adaptive learning that accurately reflects
uncertainty.

27



Needed: an adaptive learning rate that accurately reflects
uncertainty

This requires us to think a bit more about what kinds of uncertainty we are dealing with.

A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour & Bossaerts,
2011):

(a) outcome uncertainty that remains unaccounted for by the model, called risk by
economists (. in our Bayesian example); this uncertainty remains even when we know all
parameters exactly,

(b) informational or expected uncertainty about the value of model parameters (7, in the
Bayesian example),

(c) environmental or unexpected uncertainty owing to changes in model parameters (not
accounted for in our Bayesian example, hence unexpected).

28



An adaptive learning rate that accurately reflects
uncertainty

Various efforts have been made to come up with an adaptive learning rate:
— Kalman (1960)

— Sutton (1992)

— Nassar etal. (2010)

— Payzan-LeNestour & Bossaerts (2011)

— Mathys etal. (2011)

— Wilson etal. (2013)

The Kalman filter is optimal for linear dynamical systems, but realistic data usually
require non-linear models.

Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us to
derive update equations that are optimal in the sense that they minimize surprise.

29



The hierarchical Gaussian filter
(HGF, Mathys et al., 2011; 2014)

The HGF provides a generic solution to the problem of adapting one’s learning rate in a
volatile environment.

Variational inversion leads to update equations
that are - you guessed it - precision-weighted p(x{?)
prediction errors.

k -
P () = A0 (0, £, )
2O~ (x40, £ )
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Coupling between levels

Since f has to be everywhere positive, we cannot approximate it by expanding
in powers. Instead, we expand its logarithm.

fx)>0vx = 3g:f(x) = exp(g(x)) V x

gx) =g(a)+g'(a) - (x —a) + 0(2) =logf(x) =

3 f'(@ 3

= log f(a) + 0 (x—a)+0Q2) =
=];((Z))-x+logf(a)—a-;((5))+0(2) =
=kx+w+ 0(2)

= f(x) = exp(kx + w)
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Variational inversion

* A quadratic approximation is found by expanding to second order about the
expectation u =1,

* The update in the sufficient statistics of the approximate posterior is then

performed by analytically finding the maximum of the quadratic
approximation.

Maximum of T

I(x)
Variational
energy

i 2 (k1)
. d I(,u. )
Our quadratic !

approximation

4
(]
L4
L 4
L4
L
L4
L
L
L4
o

L

L

L

=

=

u

u

.\ [

N u

N u
N n

.
~Laplace’s quadratic “‘
‘ approximation .

Expansion point

u® k1)
Mathys et al. (2011). Front. Hum. Neurosci., 5:39.
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Variational inversion and update equations

Inversion proceeds by introducing a mean field approximation and fitting
quadratic approximations to the resulting variational energies (Mathys et al,,
2011).

This leads to simple one-step update equations for the sufficient statistics
(mean and precision) of the approximate Gaussian posteriors of the states
X;.

The updates of the means have the same structure as value updates in
Rescorla-Wagner learning:

Prediction error

A, of i
1 o
l nl

Furthermore, the updates are precision-weighted prediction errors.
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Precision-weighting of volatility updates

Comparison to the simple non-hierarchical Bayesian update:

k k—1
HGF:  p=u¥"

Precision-weighted
prediction error

Simple Gaussian: Holx = Ko @
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Updates at the outcome level

At the outcome level (i.e., at the very bottom of the hierarchy), we have

ul® ~ (xik),ﬁgl)

This gives us the following update for our belief on x; (our quantity of interest):

=2 + 7,

A

w _ k-1 Tu (u(k) (k—l))

Hy =u —= — U
1 1 @ 1

1

The familiar structure again - but now with a learning rate that is responsive to all
kinds of uncertainty, including environmental (unexpected) uncertainty.
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The learning rate in the HGF

Unpacking the learning rate, we see:

outcome uncertainty

/

Ty Ty Ty

= - ]
72"+, 1 2

= + T
al(k_l) +@xp (Klugk D4 W, ¢

environmental

informational .
uncertainty

uncertainty
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3-level HGF for continuous observations
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Example of precision weight trajectory
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Context effects on the learning rate

Simulation: $=0.5, o=-2.2, k=14

Posterior expectation My of log-volatility of tendency X,

3 | | I
2
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

cue prediction target ITl

300 ms 800/1000/1200 ms 150/300 ms 2000 + 500 m;

time

Changes in cue strength (black), and
posterior expectation of visual category (red)

150 200 250 300

Trials

0 50 100
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
HGF3 0.0361 0 0.1404 0 0.1304 0
Sutton 0.0685 0 0.0710 0 0.0761 0
RW 0.0260 0 0.0264 0 0.0769 0
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

Model comparison:

Behavioral study fMRI study 1 fMRI study 2
BMS results PP XP PP XP PP XP
HGF1 0.8435 1 0.7422 1 0.7166 1
HGF2 0.0259 0 0.0200 0 - -
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

first IMRI study second fMRI study conjunction across studies
x=3,y=252z=47 x=0,y=252z=47 x=0,y=25z=47

Figure 2. Whole-Brain Activations by ¢,

Activations by precision-weighted prediction error about visual stimulus outcome, g5, in the first fMRI study (A) and the second fMRI study (B). Both activation
maps are shown at a threshold of p < 0.05, FWE corrected for multiple comparisons across the whole brain. To highlight replication across studies, (C) shows the
results of a “logical AND" conjunction, illustrating voxels that were significantly activated in both studies.
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

first fMRI study

Figure 3. Midbrain Activation by ¢,
Activation of the dopaminergic VTA/SN associ-
ated with precision-weighted prediction error
about stimulus category, e.. This activation is
shown both at p < 0.05 FWE whole-brain corrected
(red) and p < 0.05 FWE corrected for the volume of
our anatomical mask comprising both dopami-
nergic and cholinergic nuclei (yellow).

(A) Results from the first fMRI study.

(B) Second fMRI study.

(C) Conjunction (logical AND) across both studies.
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HGF: empirical evidence (Iglesias et al, Neuron, 2013)

(o

“1

K4

<o

first fMRI study

@ second fMRI study

conjunction across studies

Figure 6. Basal Forebrain Activations by e3

Activation of the cholinergic basal forebrain associated with precision-
weighted prediction error about stimulus probabilities 3 within the anatomi-
cally defined mask. For visualization of the activation area we overlay the
results thresholded at p < 0.05 FWE corrected for the entire anatomical mask
(red) on the results thresholded at p < 0.001 uncorrected (yellow) in the first (A:
x=3,y=9, z=—8)and the second fMRI study (B: x=0,y=10, 2= —8). (C) The
conjunction analysis (“logical AND") across both studies (x =2,y =11,z = —8).
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HGF: empirical evidence (De Berker et al, Nature Comms, 2016)
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HGF: empirical evidence (De Berker et al, Nature Comms, 2016)

a Learning model b Uncertainty trajectories
OT\ /"/\’IM\ 3
— .
™ ™ / MW 6,
Q_. Q_. W\ A J
Probabilities
d Stress models
O-0-
Predictions Subjective _g *X 4 B, + B, NG ... + B,*X,

stress

Stress measures

Skin =8 *X + B,%X, + B X, ... + B,*X,,

conductance

Pupil
diar:zter =ﬂ|'X| + Bz% + 3 e + B,,'X,,
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HGF: empirical evidence (De Berker et al, Nature Comms, 2016)
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HGF: empirical evidence (De Berker et al, Nature Comms, 2016)
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HGF: empirical evidence (Marshall & Mathys et al., PLOS Biol., 2016)
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HGF: empirical evidence (Marshall & Mathys et al., PLOS Biol., 2016)
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HGF: empirical evidence (Marshall & Mathys et al., PLOS Biol., 2016)
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HGF: empirical evidence (Marshall & Mathys et al., PLOS Biol., 2016)
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HGF: empirical evidence (Diaconescu et al., in preparation)

E
3s 2s

Fig. 1. Experimental Paradigm: 100 male volunteers played a binary lottery task and received advice about which option to
choose from a more informed agent who was also incentivized to influence the participants’ choices. To decide whether to
take his advice into account, participants also inferred on the other’s intentions and how they changed in time.
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HGF: empirical evidence (Diaconescu et al., in preparation)
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HGF: empirical evidence (Diaconescu et al., in preparation)
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HGF: empirical evidence (Diaconescu et al., in preparation)
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HGF: empirical evidence (Lawson et al,, in revision)
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HGF: empirical evidence (Lawson et al,, in revision)

Effect of precision-weighted volatility prediction error £;3 on pupil diameter:
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How to estimate and compare models:
the HGF Toolbox

Available at https://www.tnu.ethz.ch /tapas

Start with README, manual, and interactive demo

Modular, extensible

Matlab-based
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Application to binary data

State of the Model
world
p(x5®) ~ N(x5*7,8)
----- > Log-volatilit Gaussian
e 9 X y random walk with p(x;™)
3 constant step
of tendency size 9 -
xfen
p(xo®) ~ N(x*7), exp(kxs+w))
....... Tendency Gaussian
» : (k)
> X, random walk with p(x,')
towards step size
category “1” exp(kxgtw)
x, (k1)
2
. p(x;=1) = s(xy)
Stimulus p(x,=0) = 1-s(X,)
category Sigmoid trans- y
X, formation of x, plx,=1)
(uou Or “1 u) | g
0

Mathys et al. (2011). Front. Hum. Neurosci., 5:39.
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Update equation for binary observations

x; € {0,1} is observed by the agent. Each observation leads to an update in
the belief on x,, x3, ..., and so on up the hierarchy.

The updates for x, can be derived in the same manner as above.

I (xgk)) =Ins (xgk)) =+ xék) (xik) — 1) — lﬁgk) (xék) — uék'”)z

2

k k-1 k) o(k
U = kD 4 500 500

At first, this simply looks like an uncertainty-weighted update. However,
when we unpack g, and do a Taylor expansion in powers of 77;, we see that it
is again proportional to the precision of the prediction on the level below:

~ (k)
k) _ 1y A A (AN | (AN (A0
N YN ) R S (#17) +(#:7) (2”) +o®
2 1

At all higher levels, the updates are as previously derived.
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VAPEs and VOPEs

The updates of the belief on x; are driven by value prediction errors (VAPEs)
0 _ -1, T
T

while the x,-updates are driven by volatility prediction errors (VOPEs)

W _ k-, 1w
MZ = l’tz + E K1 vl n_(k) VOPE
2

(k) k) (k=1))*
509 a1 + (" )
1

_O-(k

—1
-1 k-1
1 ) + exp (Klﬂg ) + wl)
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3-level HGF for binary observations

xék) ~N (xék_l),ﬁ)

xgk) ~N (xgk_l), exp (Kxgk) + a)))

xgk) ~ Bern (S (xgk)))

Mathys et al., 2011; Iglesias et al.,, 2013; Vossel et al,, 2014a; Hauser et al., 2014; Diaconescu et
al., 2014; Vossel et al., 2014b; ...
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Notation

66



3-level HGF for continuous observations

xgk) ~N (xék_l),ﬁ)

xgk) ~N (xgk_l), exp (szék) + wz) )

x§k)~]\f (xg(_l), exp (leék) + wl) )

v (xfk), iy 1)
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Variable drift

x§k)~]\f (xf“” + Zik_l), exp (Kxxék) + wx) )
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Jumping Gaussian estimation task

Input (green) and decision (orange) with mean and 95% interval of input (black)
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Data from Chaohui Guo
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Independent mean and variance model
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Jumping Gaussian estimation task

Prediction of input (brown), input (green), posterior belief (red) Belief on noise (red), true noise (dashed black)
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Action as active inference

allostatic predictions

!

homeostatic belief

p(x)
(expectations of
bodily states)

viscerosensory action
input (proportional to
y=g(x)+e precision-weighted PE)
physiological
variable
%

72
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Action as active inference

Model:

p () =N (% pue, ;")

p(ylx) = N(yig®),7mz,,)

Inference (i.e., belief update):
T data
Mt+1 = Ut + t — & ()
Tt + Tdata ()’ )

Tt+1 = Nt + Tigta

Stephan et al. (2016), Front. Hum. Neurosci., 10:550
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Action as active inference

Delta priors on mean and precision of state:

p (yImu) = / p (Wl ) p (o) p (re) dpae dory

= /N (7 & (o), 70, ") 8 (e — Hprior)
d (7Tt — 7Tprior) dut dmy

=N (y’ 4 ('uP"i‘"') > np_rilor)

Negative of log-evidence L is Shannon surprise S:

L =Inp ()/|mH) Slylmi) = =L
1
== 5 (ln nprior — T[prior ()/ - g (,U«prior))2> + C

1
2 <1n Tprior — Tprior (PE (Y))z) e

Stephan et al. (2016), Front. Hum. Neurosci., 10:550 74



Action as active inference

Definition of action:

) oL
a(t) = —
0x

0 :—%Tfprior()’ (xt)—g (:“prlbf))z]
0x

0 _%npriorPE()’)sz
0x
2
_ﬂprior J I:PE()}) ] a_)’

2 dy 8x/ prediction error
0
= _T[priorPE ()’) ﬁ

Action induces gradient descent on surprise S:

precision-weighted

dx _ . dx _ 1 (98
3 =2 @ = f(ax)

Stephan et al. (2016), Front. Hum. Neurosci., 10:550
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Action as active inference

Physiological state x

3 I I I I I I I

x 1
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Stephan et al. (2016), Front. Hum. Neurosci., 10:550

76



