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• The inferential (i.e., Bayesian) brain

• Reduction of Bayesian inference to precision-weighted prediction errors

• Non-stationary environments and the hierarchical Gaussian filter (HGF)

• Experimental studies and results

Outline
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Computational	modelling	and	the	inferential	brain

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550
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Abstract:

«The	design	of	a	complex	regulator	often	includes	the	making	of	a	model	of	the	system	
to	be	regulated.	The	making	of	such	a	model	has	hitherto	been	regarded	as	optional,	as	
merely	one	of	many	possible	ways.

In	this	paper	a	theorem	is	presented	which	shows,	under	very	broad	conditions,	that	
any	regulator	that	is	maximally	both	successful	and	simple	must be	isomorphic	with	
the	system	being	regulated.	(The	exact	assumptions	are	given.)	Making	a	model	is	thus	
necessary.

The	theorem	has	the	interesting	corollary	that	the	living	brain,	so	far	as	it	is	to	be	
successful	and	efficient	as	a	regulator	for	survival,	must proceed,	in	learning,	by	the	
formation	of	a	model	(or	models)	of	its	environment.»

“Every	good	regulator	of	a	system	must	be	a	model	of	that	
system”	(Conant	&	Ashby,	1970)
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• «Bayesian inference» simply means inference on uncertain quantities
according to the rules of probability theory (i.e., according to logic).

• Agents who use Bayesian inference will make better predictions (provided
they have a good model of their environment), which will give them an
evolutionary advantage.

• We may therefore assume that evolved biological agents use Bayesian
inference, or a close approximation to it.

• But how can we reduce Bayesian inference to a simple algorithm that can
be implemented by neurons?

What	the	inferential	brain	does:	Bayesian	inference
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Imagine the following situation:

You’re on a boat, you’re lost in a storm and trying to get back to shore. A
lighthouse has just appeared on the horizon, but you can only see it when
you’re at the peak of a wave. Your GPS etc., has all been washed overboard,
but what you can still do to get an idea of your position is to measure the angle
between north and the lighthouse. These are your measurements (in degrees):

76,	73,	75,	72,	77

What number are you going to base your calculation on?

Right. The mean: 74.6. How do you calculate that?

Before	we	return	to	Bayes:	a	very	simple	example	of	
updating	in	response	to	new	information
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The usual way to calculate the mean �̅� of 𝑥#, 𝑥%, … , 𝑥' is to take

�̅� =
1
𝑛+𝑥,

'

,-#

This requires you to remember all 𝑥, , which can become inefficient. Since the
measurements arrive sequentially, we would like to update �̅� sequentially as
the 𝑥, come in – without having to remember them.

It turns out that this is possible. After some algebra (see next slide), we get

�̅�'.# = �̅�' +
1

𝑛 + 1 𝑥'.# − �̅�'

Updating	the	mean	of	a	series	of	observations

7



Proof of sequential update formula:

�̅�'.# =
1

𝑛 + 1+ 𝑥, =
𝑥'.#
𝑛 + 1

'.#

,-#

+
1

𝑛 + 1+𝑥, =
𝑥'.#
𝑛 + 1

'

,-#

+
𝑛

𝑛 + 1	
1
𝑛+𝑥,

'

,-#
-2̅3

=

	

						=
𝑥'.#
𝑛 + 1 +

𝑛
𝑛 + 1 �̅�' = �̅�' +

𝑥'.#
𝑛 + 1 +

𝑛
𝑛 + 1 �̅�' −

𝑛 + 1
𝑛 + 1 �̅�' =

	

						= �̅�' +
1

𝑛 + 1 𝑥'.# + 𝑛 − 𝑛 − 1 �̅�' = �̅�' +
1

𝑛 + 1 𝑥'.# − �̅�'

q.e.d.

Updating	the	mean	of	a	series	of	observations
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The seqential updates in our example now look like this:

Updating	the	mean	of	a	series	of	observations

72 73 74 75 76 77

�̅�# = 76

�̅�% = 76 +
1
2 73 − 76 = 74.5

�̅�; = 74.5 +
1
3 75 − 74.5 = 74.6<

�̅�= = 74.6< +
1
4 72 − 74.6< = 74

�̅�> = 74 +
1
5 77 − 74 = 74.6
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�̅�'.# = �̅�' +
1

𝑛 + 1 𝑥'.# − �̅�'

What	are	the	building	blocks	of	the	updates	we’ve	just	seen?

prediction

prediction	error

new	input

weight	(learning	rate)

Is this a general pattern?

More specifically, does it generalize to Bayesian inference?

Indeed, it turns out that in many cases, Bayesian inference can be based on
parameters that are updated using precision-weighted prediction errors.
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Think boat, lighthouse, etc., again, but now we’re doing Bayesian inference.

Before we make the next observation, our belief about the true value of the parameter 𝜗 can be
described by a Gaussian prior:

𝑝(𝜗) ∼ 𝒩(𝜇F, 𝜋FH#)

The likelihood of an observation 𝑥 is also Gaussian, with precision 𝜋I :

𝑝 𝑥 𝜗 ∼ 𝒩 𝜗, 𝜋IH#

Bayes’ rule now tells us that the posterior is Gaussian again:

𝑝 𝜗 𝑥 =
𝑝 𝑥 𝜗 𝑝(𝜗)

∫ 𝑝 𝑥 𝜗′ 𝑝 𝜗′ d𝜗′�
�

∼ 𝒩 𝜇F|2, 𝜋F|2H#

Updates	in	a	simple	Gaussian	model
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Here’s how the updates to the sufficent statistics 𝜇 and 𝜋 describing our belief look like:

𝜋F|2 = 𝜋F + 𝜋I

𝜇F|2 = 𝜇F +
𝜋I
𝜋F|2

(𝑥 − 𝜇F)

The mean is updated by an uncertainty-weighted (more specifically: precision-weighted)
prediction error.

The size of the update is proportional to the likelihood precision and inversely proportional to the
posterior precision.

This pattern is not specific to the univariate Gaussian case, but generalizes to Bayesian updates
for all exponential families of likelihood distributions with conjugate priors (i.e., to all formal
descriptions of inference you are ever likely to need).

Updates	in	a	simple	Gaussian	model

prediction weight	(learning	rate)=OPQ	RSTO	QU
VWU	XUYWZ[Z\	OUWU

OPQ	RSTO	QU	YXWUY]^	_ZPQ

prediction	error
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Reminder (Gaussian update):

𝜇F|2 = 𝜇F +
𝜋I
𝜋F|2

𝑥 − 𝜇F = 𝜇F +
𝜋I

𝜋F + 𝜋I
(𝑥 − 𝜇F)

Reducing by 𝜋`the fraction of precisions that make the learning rate, we get

𝜇F|2 = 𝜇F +
1

𝜋F
𝜋I
+ 1

(𝑥 − 𝜇F)

As we shall see, this is the equation for updating an arithmetic mean, but with the number of
observations 𝑛 replaced by ab

ac
.

This shows that Bayesian inference on the mean of a Gaussian distribution entails nothing more
than updating the arithmetic mean of observations with ab

ac
=: 𝜈 as a proxy for the number of

prior observations, i.e. for theweight of the prior relative to the observation.

Reduction	to	mean	updating
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Many of the most widely used probability distributions are families of exponential distributions.

For example, the Gaussian distribution is an exponential family of distributions (and so are the beta,
gamma, binomial, Bernoulli, multinomial, categorical, Dirichlet, Wishart, Gaussian-gamma, log-Gaussian, multivariate Gaussian,
Poisson, and exponential distributions, among others). This means it can be written the following way:

𝑝 𝒙 𝝑 = ℎ 𝒙 exp 𝜼 𝝑 m 𝑻 𝒙 − 𝐴(𝝑) =
1
2𝜋𝜎� exp −

𝑥 − 𝜇 %

2𝜎
with

𝒙 = 𝑥, 	𝝑 = 	 𝜇, 𝜎 u, ℎ 𝒙 =
1
2𝜋� , 𝜼 𝝑 = 	

𝜇
𝜎 , −

1
2𝜎

u
, 	𝑻 𝒙 = 𝑥, 𝑥% u, 𝐴 𝝑 =

𝜇%

𝜎 +
ln 𝜎
2

This allows us to look at Bayesian belief updating in a very general way for all exponential
families of distributions.

Generalization	to	all	exponential	families	of	distributions
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Our likelihood is an exponential family in its general form:

𝑝 𝒙 𝝑 = ℎ 𝒙 exp 𝜼 𝝑 m 𝑻 𝒙 − 𝐴(𝝑)

The vector 𝑻 𝒙 (a function of the observation 𝒙) is called the sufficient statistic.

For the prior, we may assume that we have made 𝜈 observations with sufficient statistic 𝝃:

𝑝 𝝑 𝝃, 𝜈 = 𝑧 𝝃, 𝜈 exp 𝜈 𝜼 𝝑 m 𝝃 − 𝐴(𝝑) (where	𝑧 𝝃, 𝜈 is	a	normlization	constant)

It then turns out that the posterior has the same form, but with an updated 𝝃 and 𝜈	 replaced with
𝜈 + 1:

𝑝 𝝑 𝒙, 𝝃, 𝜈 = 𝑧 𝝃z, 𝜈 + 1 exp 𝜈 + 1 𝜼 𝝑 m 𝝃′ − 𝐴(𝝑)

𝝃z = 𝝃 +
1

𝜈 + 1 𝑻 𝒙 − 𝝃

Generalization	to	all	exponential	families	of	distributions
(Mathys,	2016)
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Proof	of	the	update	equation

𝑝 𝝑 𝒙, 𝝃, 𝜈
{P|}UW[PW

∝ 𝑝 𝒙 𝝑
X[_UX[OPP]

𝑝 𝝑 𝝃, 𝜈
{W[PW

																							= ℎ 𝒙 exp 𝜼 𝝑 m 𝑻 𝒙 − 𝐴(𝝑) 𝑧 𝝃, 𝜈 exp 𝜈 𝜼 𝝑 m 𝝃 − 𝐴(𝝑)

																							∝ exp 𝜼 𝝑 m 𝑻 𝒙 + 𝜈𝝃 − 𝜈 + 1 𝐴 𝝑

																						= exp 𝜈 + 1 𝜼 𝝑 m
1

𝜈 + 1 𝑻 𝒙 + 𝜈𝝃 − 𝐴 𝝑

																							= exp 𝜈 + 1 𝜼 𝝑 m 𝝃 +
1

𝜈 + 1 𝑻 𝒙 + 𝜈𝝃 − 𝜈 + 1 𝝃 − 𝐴 𝝑

																						= exp 𝜈 + 1 𝜼 𝝑 m 𝝃 +
1

𝜈 + 1 𝑻 𝒙 − 𝝃
-:𝝃z

− 𝐴 𝝑

⟹ 					𝑝 𝝑 𝒙, 𝝃, 𝜈 = 𝑧 𝝃z, 𝜈z exp 𝜈′ 𝜼 𝝑 m 𝝃z − 𝐴 𝝑

									with		𝜈z ≔ 𝜈 + 1, 	 𝝃z ≔ 𝝃 +
1

𝜈 + 1 𝑻 𝒙 − 𝝃

q.e.d.
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Univariate Gaussian model with unkown mean but known precision (our example from the
beginning):

𝑻 𝑥 = 𝑥

This means updating beliefs about the mean simply requires tracking the mean of observations

Univariate Gaussianmodel with unkownmean and unkown precision:

𝑻 𝑥 = 𝑥, 𝑥% u

Updating beliefs about both mean and precision of a Gaussian requires tracking the means of
observations and squared observations; this amounts to the first and second moments by which a
Gaussian distribution is fully characterized.

In themultivariate Gaussian case we have 𝑻 𝒙 = 𝒙, 𝒙𝒙u u

Some	examples
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Bernoullimodel (one out of two possible outcomes, coded as 0 and 1; e.g., coin flipping):

𝑻 𝑥 = 𝑥

The prior here turns out to be a beta distribution corresponding to 𝜈 pseudo-observations with
mean 𝜉. All we need to do to get the posterior (i.e., to update our belief) is to update the mean as
new observations come in.

Categoricalmodel (one out of several possible outcomes, with the observed outcome coded as 1,
the rest as 0)

𝑻 𝒙 = 𝒙

The prior and posterior here are Dirichlet distributions, and again, all we need to do to update
beliefs that have a Dirichlet form is to track the means of observed succeses (1) and failures (0).

Some	examples
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Betamodel (an outcome bounded between 0 and 1):

𝑻 𝑥 = ln 𝑥 , ln 1 − 𝑥 u

Gammamodel (an outcome bounded below at 0):

𝑻 𝑥 = ln 𝑥 , 𝑥 u

Some	examples
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…we have dealt (among others) with beliefs about states that are
• binary (Bernoulli)

• categorical

• bounded on both sides (beta)
• bounded on one side (gamma)

• and unbounded (Gaussian)

This includes most kinds of states we can have beliefs about. Notably,

• All Bayesian (i.e., probabilistic, rational) updates of such beliefs take the form of
precision-weighted prediction errors.

• These prediction errors and their precision weights are easy to compute.

• The prediction errors are simple functions of inputs.

...	so	in	sum:
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• Examples of distributions that are not exponential families: Student’s t, Cauchy

• These distributions are popular because of their «fat tails». However, fat tails can
also be achieved with appropriate hierarchies of Gaussians (cf. the hierarchical
Gaussian filter, HGF)

• A further kind of distributions that are not exponential families are found in
mixture models.

• Such models are popular because of they provide multimodal distributions. But
again, appropriate hierarchies of distributions may save the day.

Limitations

21



• Formulate the problem hierarchically (i.e., imitate evolution: when
it built a brain that supports a mind which is a model of its
environment, it came up with a (largely) hierarchical solution)

• Separate levels using a mean-field approximation

• Derive update equations

• Example: HGF

How	to	reveal	the	precision-weighting	of	prediction	errors	
when	simple	exponential-family	likelihoods	will	not	do
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Neurobiology:	predictive	coding	(e.g.,	Friston,	2005)
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𝜆 𝑥

Sensory	input

True
hidden	states

Inferred
hidden	states

Action

𝑢

𝑎

WorldAgent No,	the	dynamics
are	missing!

But:	does	inference	as	we’ve	described	it	adequately	
describe	the	situation	of	actual	biological	agents?
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Up to now, we’ve only looked at inference on static quantities, but biological
agents live in a continually changing world.

In our example, the boat’s position changes and with it the angle to the
lighthouse.

How can we take into account that old information becomes obsolete? If we
don’t, our learning rate becomes smaller and smaller because our eqations
were derived under the assumption that we’re accumulating information
about a stable quantity.

What	about	dynamics?
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Keep it constant!

So, taking the update equation for the mean of our observations as our point of departure...

�̅�' = �̅�'H# +
1
𝑛 𝑥' − �̅�'H# ,

... we simply replace #
'
with a constant 𝛼:

𝜇' = 𝜇'H# + 𝛼 𝑥' − 𝜇'H# .

This is called Rescorla-Wagner learning [although it wasn’t this line of reasoning that led
Rescorla & Wagner (1972) to their formulation].

What’s	the	simplest	way	to	keep	the	learning	rate	from	
going	too	low?
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Partly: it implies a certain rate of forgetting because it amounts to taking only
the 𝑛 = #

�
last data points into account. But...

... if the learning rate is supposed to reflect uncertainty in Bayesian inference,
then how do we

(a) know that 𝛼 reflects the right level of uncertainty at any one time, and

(b) account for changes in uncertainty if 𝛼 is constant?

What we really need is an adaptive learning that accurately reflects
uncertainty.

Does	a	constant	learning	rate	solve	our	problems?
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This requires us to think a bit more about what kinds of uncertainty we are dealing with.

A possible taxonomy of uncertainty is (cf. Yu & Dayan, 2003; Payzan-LeNestour & Bossaerts,
2011):

(a) outcome uncertainty that remains unaccounted for by the model, called risk by
economists (𝜋I in our Bayesian example); this uncertainty remains even when we know all
parameters exactly,

(b) informational or expected uncertainty about the value of model parameters (𝜋F|2 in the
Bayesian example),

(c) environmental or unexpected uncertainty owing to changes in model parameters (not
accounted for in our Bayesian example, hence unexpected).

Needed:	an	adaptive	learning	rate	that	accurately	reflects	
uncertainty
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Various efforts have been made to come up with an adaptive learning rate:
– Kalman (1960)

– Sutton (1992)

– Nassar et al. (2010)
– Payzan-LeNestour & Bossaerts (2011)

– Mathys et al. (2011)

– Wilson et al. (2013)

The Kalman filter is optimal for linear dynamical systems, but realistic data usually
require non-linear models.

Mathys et al. use a generic non-linear hierarchical Bayesian model that allows us to
derive update equations that are optimal in the sense that they minimize surprise.

An	adaptive	learning	rate	that	accurately	reflects	
uncertainty

29



The	hierarchical	Gaussian	filter
(HGF,	Mathys	et	al.,	2011;	2014)

𝑝 𝑥'
(�)

𝑥%
(�H#)

𝑥'
(�)~𝒩 𝑥'

(�H#), 𝜗

𝑥#
(�)~𝒩 𝑥#

�H# , 𝑓# 𝑥%

𝑝 𝑥#
(�)

𝑥#
(�H#)

𝑥%
(�)~𝒩 𝑥%

�H# , 𝑓% 𝑥;

𝑝 𝑥%
(�)

𝑥%
(�H#)

𝑥,
(�)~𝒩 𝑥,

�H# , 𝑓, 𝑥,.#

𝑝 𝑥,
(�)

𝑥,
(�H#)

30

The HGF provides a generic solution to the problem of adapting one’s learning rate in a
volatile environment.

Variational	inversion	leads	to	update	equations
that	are	– you	guessed	it	– precision-weighted
prediction	errors.



Coupling	between	levels

Since	𝑓 has	to	be	everywhere	positive,	we	cannot		approximate	it	by	expanding	
in	powers.	Instead,	we	expand	its	logarithm.

𝑓 𝑥 > 0	∀	𝑥	 ⟹	∃	𝑔: 𝑓 𝑥 = exp 𝑔 𝑥 	∀	𝑥																			

𝑔 𝑥 = 𝑔 𝑎 + 𝑔z 𝑎 m 𝑥 − 𝑎 + 𝑂 2 = log 𝑓 𝑥 =						

= log 𝑓 𝑎 +
𝑓′(𝑎)
𝑓(𝑎) m 𝑥 − 𝑎 + 𝑂(2) =											

=
𝑓′(𝑎)
𝑓(𝑎)
≝�

m 𝑥 + log 𝑓 𝑎 − 𝑎 m
𝑓z(𝑎)
𝑓(𝑎)

≝�

+ 𝑂 2 =

= 𝜅𝑥 + 𝜔 + 𝑂 2 																																																	

⟹ 𝑓 𝑥 ≈ exp 𝜅𝑥 + 𝜔 																																																										
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Variational	inversion

• A	quadratic	approximation	is	found	by	expanding	to	second	order	about	the	
expectation	𝜇(�H#).

• The	update	in	the	sufficient	statistics	of	the	approximate	posterior	is	then	
performed	by	analytically	finding	the	maximum	of	the	quadratic	
approximation.

x

μ(k) μ(k-1)

Ĩ(x)I(x)

Expansion point

Our quadratic
approximation

Variational
energy

Maximum of Ĩ

Laplace’s quadratic
approximation

Mathys et al. (2011). Front. Hum. Neurosci., 5:39.
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Δ𝜇, ∝
𝜋�,H#
𝜋,

𝛿,H#

• Inversion proceeds by introducing a mean field approximation and fitting
quadratic approximations to the resulting variational energies (Mathys et al.,
2011).

• This leads to simple one-step update equations for the sufficient statistics
(mean and precision) of the approximate Gaussian posteriors of the states
𝑥, .

• The updates of the means have the same structure as value updates in
Rescorla-Wagner learning:

• Furthermore, the updates are precision-weighted prediction errors.

Variational	inversion	and	update	equations

Prediction error

Precisions determine 
learning rate

33



Precision-weighting	of	volatility	updates

Comparison	to	the	simple	non-hierarchical	Bayesian	update:

HGF:

Simple	Gaussian:

𝜇,
(�) = 𝜇,

(�H#) +
1
2 𝜅,H#	𝑣,H#

(�) m
𝜋�,H#
(�)

𝜋,
(�) m 𝛿,H#

(�)

𝜇F|2 = 𝜇F +
𝜋I
𝜋F|2

(𝑥 − 𝜇F)

Precision-weighted 
prediction error
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At the outcome level (i.e., at the very bottom of the hierarchy), we have

𝑢(�)	~	𝒩 𝑥#
� , 𝜋��H#

This gives us the following update for our belief on 𝑥# (our quantity of interest):

𝜋#
(�) = 𝜋�#

(�) + 𝜋��

𝜇#
(�) = 𝜇#

(�H#) +
𝜋��
𝜋#
(�) 𝑢 � − 𝜇#

(�H#)

The familiar structure again – but now with a learning rate that is responsive to all
kinds of uncertainty, including environmental (unexpected) uncertainty.

Updates	at	the	outcome	level
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Unpacking the learning rate, we see:

𝜋��
𝜋#
(�) =

𝜋��
𝜋�#
(�) + 𝜋��

=
𝜋��

1
𝜎#
(�H#) + exp 𝜅#𝜇%

(�H#) + 𝜔#
+ 𝜋��

The	learning	rate	in	the	HGF

informational	
uncertainty

environmental	
uncertainty

outcome	uncertainty
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3-level	HGF	for	continuous	observations
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Example	of	precision	weight	trajectory
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Context	effects	on	the	learning	rate

Simulation: 4.1  ,2.2  ,5.0 =-== kwJ
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HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)

40



Model	comparison:

HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)
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Model	comparison:

HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)
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HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)
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HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)

44



HGF:	empirical	evidence	(Iglesias	et	al,	Neuron,	2013)
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HGF:	empirical	evidence	(De	Berker	et	al,	Nature	Comms,	2016)
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HGF:	empirical	evidence	(De	Berker	et	al,	Nature	Comms,	2016)
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HGF:	empirical	evidence	(De	Berker	et	al,	Nature	Comms,	2016)
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HGF:	empirical	evidence	(De	Berker	et	al,	Nature	Comms,	2016)
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HGF:	empirical	evidence	(Marshall	&	Mathys	et	al.,	PLOS	Biol.,	2016)
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HGF:	empirical	evidence	(Marshall	&	Mathys	et	al.,	PLOS	Biol.,	2016)
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HGF:	empirical	evidence	(Marshall	&	Mathys	et	al.,	PLOS	Biol.,	2016)
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HGF:	empirical	evidence	(Marshall	&	Mathys	et	al.,	PLOS	Biol.,	2016)
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HGF:	empirical	evidence	(Diaconescu et	al.,	in	preparation)
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Hierarchy

3. Outcome PE 

1. Cue-Related PE

2. Advice  PE 

5. Volatility PE  
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HGF:	empirical	evidence	(Diaconescu et	al.,	in	preparation)
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HGF:	empirical	evidence	(Diaconescu et	al.,	in	preparation)
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HGF:	empirical	evidence	(Diaconescu et	al.,	in	preparation)
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HGF:	empirical	evidence	(Lawson	et	al.,	in	revision)
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HGF:	empirical	evidence	(Lawson	et	al.,	in	revision)

Effect of precision-weighted volatility prediction error 𝜺𝟑 on pupil diameter:
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How	to	estimate	and	compare	models:
the	HGF	Toolbox

• Available	at	https://www.tnu.ethz.ch/tapas

• Start	with	README,	manual,	and	interactive	demo		

• Modular,	extensible

• Matlab-based
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Application	to	binary	data

State of the 
world Model

Log-volatility
x3

of tendency

Gaussian
random walk with 

constant step 
size ϑ

p(x3
(k)) ~ N(x3

(k-1),ϑ)

Tendency
x2

towards 
category “1”

Gaussian 
random walk with 

step size
exp(κx3+ω)

p(x2
(k)) ~ N(x2

(k-1), exp(κx3+ω))

Stimulus 
category
x1

(“0” or “1”)

Sigmoid trans-
formation of x2

p(x1=1) = s(x2)
p(x1=0) = 1-s(x2)

0

x2

1

p(x1=1)

𝑥#
(�H#)

𝜅, 𝜔

𝜗

𝑥;
(�H#)

𝑥%
(�H#)

𝑥;
(�)

𝑥%
(�)

𝑥#
(�)

x3(k-1)

p(x3(k))

x2(k-1)

p(x2(k))

Mathys et al. (2011). Front. Hum. Neurosci., 5:39.
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Update	equation	for	binary	observations	

• 𝑥# ∈ {0,1} is	observed	by	the	agent.	Each	observation	leads	to	an	update	in	
the	belief	on	𝑥%, 𝑥;, …,	and	so	on	up	the	hierarchy.

• The	updates	for	𝑥% can	be	derived	in	the	same	manner	as	above.

• At	first,	this	simply	looks	like	an	uncertainty-weighted	update.	However,	
when	we	unpack	𝜎% and	do	a	Taylor	expansion	in	powers	of	𝜋�#,	we	see	that	it	
is	again	proportional	to	the	precision	of	the	prediction	on	the	level	below:

• At	all	higher	levels,	the	updates	are	as	previously	derived.

𝐼 𝑥%
(�) = ln 𝑠 𝑥%

(�) + 𝑥%
(�) 𝑥#

(�) − 1 −
1
2𝜋�%

� 𝑥%
(�) − 𝜇%

(�H#) %

𝜇%
(�) = 𝜇%

(�H#) + 𝜎%
(�)𝛿#

(�)

𝜎%
(�) =

𝜋�#
�

𝜋�%
� 𝜋�#

� + 1
= 𝜋�#

� − 𝜋�%
� 𝜋�#

� %
+ 𝜋�%

� %
𝜋�#
� ;

+ 𝑂(4)
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VAPEs	and	VOPEs

The	updates	of	the	belief	on	𝑥# are	driven	by	value	prediction	errors	(VAPEs)

𝜇#
(�) = 𝜇#

(�H#) +
𝜋��
𝜋#
(�) 𝑢(�) − 𝜇#

(�H#) ,

while	the	𝑥%-updates	are	driven	by	volatility	prediction	errors	(VOPEs)

𝜇%
(�) = 𝜇%

(�H#) +
1
2 𝜅#	𝑣#

(�) 𝜋�#
(�)

𝜋%
(�) 𝛿#

(�)

𝛿#
(�) ≝

𝜎#
� + 𝜇#

� − 𝜇#
(�H#) %

𝜎#
(�H#) + exp 𝜅#𝜇%

(�H#) + 𝜔#
− 1

VAPE

VOPE
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3-level	HGF	for	binary	observations

𝑥;

𝑥%

𝜗

𝜅, 𝜔

𝑥#

𝑥;
� 	~	𝒩 𝑥;

�H# , 𝜗

𝑥%
� 	~	𝒩 𝑥%

�H# , exp 𝜅𝑥;
� + 𝜔

𝑥#
� 	~	Bern 𝑠 𝑥%

�

Mathys	et	al.,	2011;	Iglesias	et	al.,	2013;	Vossel	et	al.,	2014a;	Hauser	et	al.,	2014;	Diaconescu	et	
al.,	2014;	Vossel	et	al.,	2014b;	...

VAPE

VOPE
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Notation

𝑦

ζ

≝
ζ

𝑦(�H#) 𝑦(�) 𝑦(�.#)

𝑘 = 1,… , 𝑛

ζ

≝
ζ

𝑦(�)

𝑘 = 1,… , 𝑛

𝑦

𝑥

≝
𝑘 = 1,… , 𝑛

𝑢 𝑢(�H#) 𝑢(�) 𝑢(�.#)

𝑥(�H#) 𝑥(�) 𝑥(�.#)
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3-level	HGF	for	continuous	observations

𝑢

𝑥;

𝑥#

𝜗

𝜅#, 𝜔#

𝜋��

VAPE

VOPE

𝑥#
(�)~𝒩 𝑥#

�H# , exp 𝜅#𝑥%
(�) + 𝜔# 	

𝑥;
(�)~𝒩 𝑥;

�H# , 𝜗	

𝑢(�)~𝒩 𝑥#
� , 𝜋��H#

𝑥%𝜅%, 𝜔%

VOPE

𝑥%
(�)~𝒩 𝑥%

�H# , exp 𝜅%𝑥;
(�) + 𝜔% 	
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Variable	drift

𝑢

𝑥% 𝑧%

𝑥# 𝑧#

𝜗2 𝜗©

𝜅2, 𝜔2 𝜅©, 𝜔©

𝜋��

VAPE

VAPE

VOPE VOPE

𝑥#
(�)~𝒩 𝑥#

�H# + 𝑧#
(�H#), exp 𝜅2𝑥%

(�) + 𝜔2 	
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Jumping	Gaussian	estimation	task

Data	from	Chaohui Guo
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Independent	mean	and	variance	model

𝑢

𝑥ª 𝛼ª

𝑥 𝛼

𝜗2 𝜗�

𝜅2, 𝜔2 𝜅�, 𝜔�

𝜅�, 𝜔�

VAPE VAPE

VOPE VOPE

𝑢(�)	~	𝒩 𝑥 � , 	exp 𝜅�𝛼(�) + 𝜔�
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Jumping	Gaussian	estimation	task
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Action	as	active	inference

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550
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Action	as	active	inference

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550

Model:

Inference	(i.e.,	belief	update):
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Action	as	active	inference

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550

Delta	priors	on	mean	and	precision	of	state:

Negative	of	log-evidence	L is	Shannon	surprise	S:
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Action	as	active	inference

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550

Definition	of	action:

Action	induces	gradient	descent	on	surprise	S:
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precision-weighted	
prediction	error



Action	as	active	inference

Stephan	et	al.	(2016),	Front.	Hum.	Neurosci.,	10:550
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