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Abstract

Successful interaction with the environment requires flexible updating of our beliefs about

the world. By estimating the likelihood of future events, it is possible to prepare appropriate

actions in advance and execute fast, accurate motor responses. According to theoretical

proposals, agents track the variability arising from changing environments by computing

various forms of uncertainty. Several neuromodulators have been linked to uncertainty sig-

nalling, but comprehensive empirical characterisation of their relative contributions to per-

ceptual belief updating, and to the selection of motor responses, is lacking. Here we assess

the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computa-

tional framework of uncertainty. Using pharmacological interventions in a sample of 128

healthy human volunteers and a hierarchical Bayesian learning model, we characterise

the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on

individual computations of uncertainty during a probabilistic serial reaction time task. We

propose that noradrenaline influences learning of uncertain events arising from unexpected

changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to

chance fluctuations within an environmental context, defined by a stable set of probabilistic

associations, or to gross environmental violations following a contextual switch. Dopamine

supports the use of uncertainty representations to engender fast, adaptive responses.

Author Summary

Interacting with dynamic and ever-changing environments requires frequent updating of
our beliefs about the world. By learning the relationships that link events in the current
environmental context, it is possible to prepare and execute fast, accurate responses to
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those events that are predictable. However, the world’s complex dynamics give rise to
uncertainty about the relationships that exist between events and uncertainty about how
these relationships might change over time. Several neuromodulators have been proposed
to signal these different forms of uncertainty, but their relative contributions to updating
beliefs and modulating responses have remained elusive. Here we combine a probabilistic
reaction time task, pharmacological interventions, and a hierarchical Bayesian learning
model to identify the roles of noradrenaline, acetylcholine, and dopamine in individual
computations of uncertainty. We propose that noradrenaline modulates learning about
the instability of the relationships that link environmental events. Acetylcholine balances
the attribution of uncertainty to unexpected events occurring within an environmental
context or to gross violations of our expectations following a context change. In contrast,
dopamine sensitises our actions to our beliefs about uncertainty.

Introduction

Adaptive performance in dynamic environments depends on our ability to represent and
manipulate internal estimates of the world’s statistical structure [1–4]. By tracking the environ-
ment’s underlying regularities, an agent can learn the causes of its sensory input and thus the
likelihood that a particular event will occur. In turn, this permits anticipatory action prepara-
tion and the rapid execution of responses [5].

However, the environment’s richly complicated sources of noise and latent structure present
us with various forms of uncertainty. For instance, a London commuter predicting her journey
time to work faces three distinct forms. First, there is irreducible uncertainty, which captures
the randomness inherent in any complex environment and is undiminished by learning; an
unplanned station closure could cause journey delays and thus influence the accuracy of the
commuter’s estimated arrival time on any given day. Second, after moving to a new part of
town, the duration of the commuter’s chosen route to work may be unclear, producing uncer-
tainty about how likely she is to arrive at work on time. Over repeated journeys, this estimation
uncertainty falls as the commuter learns about the probabilistic relationships within the current
environmental context. For example, she learns to predict the frequent delays on this new
route due to congestion during the morning rush hour, although these delays may vary with
local dips and surges in the number of passengers using the service. Volatility uncertainty arises
from our beliefs about the stability of the environment and thus how quickly probabilistic rela-
tionships are changing between contexts. A major sporting event, such as the London Olym-
pics, may bring a large influx of additional passengers for an unknown period of time and with
unexpected effects on transport performance, making it harder to predict future journey times
until these changes have been taken into account.

The Brain Computes Different Forms of Uncertainty

An assortment of theoretical, behavioural, and neurobiological evidence suggests that the brain
computes uncertainty estimates relating to the environment’s sensory events, contextual asso-
ciations, and their changes over time [6–17]. Uncertainty about the validity of one’s own
perceptual beliefs about the world should have the effect of suppressing top-down prior
expectations relative to new bottom-up sensory evidence, promoting learning about the current
environmental context [18]. With their broad distribution and extensive connectivity, neuro-
modulatory networks are well placed to facilitate the widespread changes in gain required to
support such a function [19,20]. In particular, acetylcholine (ACh) and noradrenaline (NA)
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are known to enhance bottom-up, feedforward thalamocortical transmission of sensory infor-
mation relative to top-down, intracortical, and feedback processing [4,21–30].

Proposed roles for NA and ACh in computations of uncertainty. Within a stable envi-
ronmental context, uncertainty arises from ignorance about, and the unreliability of, probabi-
listic cues predicting upcoming sensory events. Learning the environment’s underlying
statistical regularities means that responses to explicitly and predictably cued events are typi-
cally faster than to those believed improbable [31–34]. This effect is modulated by pharmaco-
logical [35,36], surgical [37,38], and neurodegenerative [39] manipulations of ACh. For
example, human cholinergic basal forebrain activity has been shown to reflect an individual’s
uncertainty about probabilistic cue-outcome relationships [15]. More specifically, ACh appears
to increase the rate at which humans learn probabilistic relationships under estimation uncer-
tainty, supporting the idea that ACh enhances learning accorded to stimuli with uncertain pre-
dictive consequences [40] by suppressing the use of outdated top-down cues and boosting
bottom-up sensory processing [4].

While NA plays no consistent role in probabilistic cueing [41,42], it is thought to offer an
interrupt signal when volatility uncertainty arises between contexts [41–47]. Learning to make
accurate predictions from the strongly unexpected observations that follow a contextual switch
necessitates heightened sensory vigilance and a disregard for outdated top-down expectations.
NA, with its broad neural network capable of triggering multiple, simultaneous changes across
the brain [48], is well placed to rapidly coordinate this process. Indeed, neurons in the locus
coeruleus (LC), the primary source of cortical NA, show strong responses to unexpected envi-
ronmental changes [49,50]. Pharmacologically up-regulating NA accelerates the detection of
unexpected switches in the predictive properties of sensory stimuli [51], while noradrenergic
deafferentation of rat medial frontal cortex impairs behavioural adaptation to contextual
switches [52]. Moreover, blood-oxygen-level-dependent (BOLD) activity in human LC has
been shown to dynamically track volatility uncertainty [16], and pupil dilation—which is influ-
enced by (nor)adrenergic afferents [53]—correlates with unexpected changes in probabilistic
context [54,55].

Motor Responses Are Sensitive to Uncertainty

Thus, uncertainty representations existing within and between environmental contexts are
crucial for optimal predictions about the probability of future events. While good predictions
facilitate anticipatory preparation of appropriate behavioural responses [5], they are not
sufficient for adaptive performance in dynamic environments. An additional mechanism
is required to modify action selection based on one’s own beliefs about the latent changes in
the environment and/or the occurrence of unexpected events. Indeed, when an unexpected
event occurs, humans are capable of engaging resources to inhibit a prepared response and
replace it with an alternative [56,57], albeit at the expense of a prolonged reaction time (RT)
[58,59].

Proposed role for dopamine in response modulation. There is considerable evidence
linking the neuromodulator dopamine (DA) to flexible behaviour [60–64]. Dopaminergic
deficits due to Parkinson’s disease are associated with specific flexibility impairments in
both motor [59,65] and cognitive domains [60,66], with performance restored by dopaminer-
gic medication [59,67]. In healthy individuals, pharmacological DA depletions impair adap-
tive reactions to unexpected events occurring within a broadly predictable context [58].
However, it remains unclear whether DA supports accurate response selection by facilitating
perceptual belief updating [15] or by modulating the sensitivity of response selection to per-
ceptual beliefs.

Pharmacological Fingerprints of Uncertainty
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A Unified Framework of Uncertainty

In sum, while physiological, pharmacological, behavioural, and theoretical work has suggested
separable neuromodulatory involvement in different uncertainty computations, attempts to
characterise the relative contributions of NA, ACh, and DA within a single computational
scheme are lacking (but see noticeable exceptions from Varazzani et al. [68] contrasting the
roles of NA and DA in motivation and Brown et al. [69] assessing NA and ACh involvement in
orienting responses to environmental novelty). Here we employ a Hierarchical Gaussian Ffilter
(HGF) model [9,10] to track human learning and response modulation in dynamic, probabilis-
tic environments under pharmacological NA, ACh, and DA interventions.

The HGF has been successfully applied in several recent studies of learning under volatility
[15,17,70–74]. We developed a novel instantiation of the HGF with two components: a three-
level perceptual model of an agent’s mapping from environmental causes to sensory inputs and
a response model that maps those inferred environmental causes to observed RT responses
[75]. Thus, we sought to disentangle the effects of pharmacological interventions of the NA,
ACh, and DA neuromodulatory systems on participant-specific perceptual belief updating
from those on the sensitivity of motor responses to perceptual estimates.

Results

According to a double-blind, between-subject design, 128 healthy participants undertook a
serial probabilistic RT task (Fig 1) after having received a noradrenergic α1-receptor antagonist
(prazosin; NA- group), a cholinergic M1-receptor antagonist (biperiden; ACh- group) or a
dopaminergic D1/D2 receptor antagonist (haloperidol; DA- group), or a placebo. Data from
124 participants are reported. Four participants were excluded from analyses, three due to high
missed response rates (�11%) and one because the behavioural model parameter estimation
(using the Broyden-Fletcher-Goldfarb-Shanno algorithm) did not converge. The four drug
groups were matched for gender (Kruskal-Wallis test: H3 = 0.53, p = 0.912), age (one-way
ANOVA: F3,120 = 0.46, p = 0.714), body weight (F3,120 = 2.24, p = 0.087), education level (H3 =
1.31, p = 0.727), and all baseline psychometric measures taken (Table 1).

On each trial, participants were required to respond to the presentation of one of four visual
stimuli by making a speeded button press before the end of a 1,200 ms intertrial interval (ITI)
(Fig 1). Participants were trained on the stimulus-response mappings, which remained consis-
tent within an experimental session but were counterbalanced across participants. The experi-
mental sequence of 1,200 trials was generated by a hidden probabilistic rule that switched,
without explicit indication to the participant, every 50 trials. At any given time, stimulus transi-
tions were generated by one of eight different transition matrices (TMs). Trials were drawn
from each TM three times. The order of TMs was pseudorandom, with no consecutive repeats.
The overall probability of each stimulus was equal across the 1,200 trials.

This created transient contexts that participants could infer from stimulus observations,
allowing them to reduce their uncertainty about events before they occurred [76]. Nonetheless,
the probabilistic nature of these contexts also produced unexpected stimulus outcomes, i.e., a
sensory prediction error (PE). For fast and accurate responses, participants had to track three
forms of uncertainty: irreducible uncertainty arising from the inherent randomness of the
probabilistic transitions between consecutive stimuli, estimation uncertainty arising from their
imperfect knowledge of the probabilistic relationships governing stimulus transition contin-
gencies within contexts, and volatility uncertainty maintained by the unsignalled contextual
instability.

In total, participants responded correctly on 90.3 ± 0.79% (mean ± standard error of the
mean [SEM]), 88.4 ± 1.23%, 87.7 ± 1.27%, and 89.2 ± 0.91% of the trials in the Placebo, NA-,
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ACh-, and DA- groups, respectively. The percentages of correct responses did not differ
between groups (F3,123 = 1.12, p = 0.345). Since a significant time x drug interaction on self-
reported alertness was identified (see the Physiological and Subjective Control Measures results
in S1 Text), the participant-specific difference in alertness between baseline and the time corre-
sponding to peak drug concentration, Δalertness, was used as a covariate in our analyses to con-
trol for any interparticipant variability in subjective drug effect. Since psychopharmacological
drugs can have dose-dependent effects [77–79], we also included body weight as an additional
covariate in our analyses.

Model-Agnostic Analyses

We first conducted a series of conventional, model-agnostic analyses of behaviour, to assess
whether participants learned about the underlying stimulus transition contingencies and
whether learning was influenced by our pharmacological interventions (Fig 2). First, we

Fig 1. Task design. (A) Trial sequence. A trial began with the presentation of a central white fixation cross against a black
background. After an initial delay of 1,500 ms at the start of each block, one of four visual stimuli was presented for 200 ms.
Participants were required to make a speeded button-press response before the end of a 1,200 ms intertrial interval (ITI). (B)
Stimulus transitions were generated by one of eight different transition matrices (TMs), which changed every 50 trials without
explicit indication to the participant. These TMs comprised two different first-order sequences, two alternating sequences, and
four zeroth-order sequences, each of which occurred three times in a pseudorandom order across 1,200 trials. The overall
probability of each stimulus was equal across the 1,200 trials. For full details, see S1 Fig. (C) Example trial sequences
generated from the three example TMs in 1B. (D) By tracking the transition probabilities, participants could learn to predict
high probability events and prepare to make the correct button press accordingly. Faster responses were observed for
predictable stimuli compared to unexpected stimuli. Here we depict Placebo group log(RTs) (mean ± standard error of the
mean [SEM]) for each of the 16 possible combinations between consecutive stimuli for the first-order sequence shown in B.
Grey boxes indicate stimulus combinations with a high transition probability. (E) Indeed, across all types of TM, responses
were faster for stimuli with higher transition probabilities (mean ± SEM). http://dx.doi.org/10.6084/m9.figshare.3796314.v1.

doi:10.1371/journal.pbio.1002575.g001
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conducted a repeated-measures analysis of variance (RM-ANOVA) of the log(RTs) for correct
responses on trials binned according to the five true conditional probabilities that existed in
each of the TMs, grouped into High (0.85 and 0.70), Mid (0.25 and 0.20), and Low (0.05) tran-
sition probabilities, with drug as a between-subject factor. This revealed a significant decrease
in log(RTs) with increasing transition probability (main effect of probability: F1.27,150.10 =
28.32, p< 0.001, effect size ηp

2 = 0.19), which was modulated by drug type (probability x drug
interaction: F3.82,150.10 = 12.33, p< 0.001, ηp

2 = 0.24).
Moreover, across the course of a contextual block (Fig 2B), participants became faster at

responding to High and Mid probability stimuli and slower at responding to the Low probabil-
ity stimuli (significant main effects of probability: F1.28,151.41 = 27.80, p< 0.001, ηp

2 = 0.19, and
time: F1,118 = 12.01, p = 0.001, ηp

2 = 0.09; probability x time interaction: F2,236 = 6.55, p = 0.002,
ηp

2 = 0.05). The effect was modulated by drug type (probability x time x drug interaction:
F6,236 = 3.16, p = 0.005, ηp

2 = 0.07) but again not systematically related to differences in Δalert-
ness or body weight between drug groups (all p> 0.05). Post hoc (Benjamini-Hochberg-cor-
rected) pairwise comparisons indicated that the impact of drug was driven by the ACh- group,
which showed significant log(RT) slowing compared to Placebo (t57 = 2.98, p = 0.003, effect
size Cohen’s d = 0.79). Together, these results indicate that participants learned about the true
stimulus transition contingencies and that this learning was modulated by our pharmacological
manipulations.

As is common in such behavioural tasks [80–83], participants showed evidence of post-
error slowing on correct trials following those on which they made an error (F1,118 = 10.92,
p = 0.001, ηp

2 = 0.09; Fig 2C). This effect was not modulated by drug group (trial-type x drug
interaction: p = 0.933) or by Δalertness or body weight (both p> 0.29). Participants also
demonstrated significant log(RT) slowing on correct post-infrequent trials (true transition

Table 1. Participant details for each experimental group.

Placebo (n = 32) NA- (n = 31) ACh- (n = 29) DA- (n = 32) Between-Group Difference?

Gender (Number Male)# 13 15 14 14 ns, p = 0.912

Age (Years) 23.0 ± 4.6 23.1 ± 4.0 22.0 ± 3.6 22.8 ± 4.5 ns, p = 0.714

Weight (kg) 61.7 ± 1.5 69.0 ± 2.4 64.9 ± 2.5 64.1 ± 1.7 ns, p = 0.087

Education Level (1–5)# 2.7 ± 0.2 2.8 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 ns, p = 0.727

Digit Span (Forwards + Backwards)# 13.1 ± 0.4 13.0 ± 0.5 12.7 ± 0.4 13.8 ± 0.5 ns, p = 0.252

Impulsivity: BIS-11 61.9 ± 1.5 65.4 ± 1.5 64.7 ± 1.6 63.3 ± 2.0 ns, p = 0.465

Risk Taking: DOSPERT (Total) 104.3 ± 3.0 113.5 ± 3.6 107.7 ± 3.7 105.5 ± 3.5 ns, p = 0.245

Distractibility: CFQ 38.3 ± 1.9 41.7 ± 1.6 43.9 ± 1.8 40.3 ± 1.9 ns, p = 0.185

Sleep Quantity on the Previous Night (Hours)# 7.3 ± 0.2 7.2 ± 0.2 6.7 ± 0.3 7.1 ± 0.2 ns, p = 0.513

Sleep Quality on the Previous Night (1–8)# 5.5 ± 0.3 5.7 ± 0.2 5.3 ± 0.3 5.4 ± 0.2 ns, p = 0.620

Fatigue during Task (0–100) 44.6 ± 3.9 44.8 ± 3.6 43.5 ± 2.6 41.2 ± 3.7 ns, p = 0.876

Active Drug (%)# 50 77 86 44 p = 0.001

Between-group comparisons revealed no significant differences (ns = nonsignificant) for gender, age, body weight, education level, baseline cognitive

capacity (Digit Span), impulsivity (Barratt Impulsiveness Scale, BIS-11), risk taking (Domain-Specific Risk-Taking Scale, DOSPERT), distractibility

(Cognitive Failures Questionnaire, CFQ), fatigue during the task, or sleep quality or quantity on the previous night. For continuous data, one-way ANOVAs

were used to test for any between-group differences. For discrete data (#), Kruskal-Wallis tests were applied. Education level refers to the highest attained

from the following: 1 = compulsory education (12 y); 2 = further education (13–14 y); 3 = undergraduate degree (15–17 y); 4 = one postgraduate degree

(�18 y); and 5 = multiple postgraduate degrees. Age data are mean ± standard deviation (SD). Remaining data are mean ± SEM. Active drug refers to the

percentage of participants within each group who reported at the end of the experiment that they believed they had received an active drug. http://dx.doi.org/

10.6084/m9.figshare.3168682.v1.
# Discrete data.

doi:10.1371/journal.pbio.1002575.t001
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probability = 0.05) compared to all other correct trials (F1,118 = 36.00, p< 0.001, ηp
2 = 0.23; Fig

2D), which was modulated by drug group (F3,118 = 4.58, p = 0.005, ηp
2 = 0.10), but not by

Δalertness or body weight (both p> 0.15). This effect was driven by the ACh- group, with pair-
wise comparisons revealing significant slowing compared to Placebo (t57 = 3.38, p = 0.001,
d = 0.90). Error rates significantly decreased with increasing transition probability (main effect
of probability: F1.57, 182.11 = 5.04, p = 0.013, ηp

2 = 0.04). The effect was again modulated by
drug type (probability x drug interaction: F4.71, 182.11 = 4.72, p = 0.001, ηp

2 = 0.11), but not by
Δalertness or body weight (both p> 0.78). There was no between-subject effect of drug group
(p = 0.768). For additional model-agnostic analyses, please refer to S1 Text. Raw RT data can
be found at https://dx.doi.org/10.6084/m9.figshare.3793410.v2.

Model-Based Analyses

The HGF model (Fig 3) allows us to map an individual’s beliefs about stimulus transitions,
transition contingencies, and volatility—and the respective irreducible, estimation, and volatil-
ity uncertainty about these beliefs—onto his/her observed RT responses. The HGF is hierarchi-
cal not only in that learning occurs simultaneously at multiple levels, but also in that belief
updating at one level is constrained by beliefs at the level above. This provides a generic frame-
work for implementing dynamic learning rates, which underlie learning in volatile environ-
ments [1,84]. We predicted that antagonising NA and ACh would impact on participants’

Fig 2. Model-agnostic changes in log(RT) indicate that participants learned to predict the stimulus transitions. (A) In all
four groups, log(RT) increased as a stimulus’ true transition probability decreased. (B) A median split on each 50-trial contextual
block was used to compare mean log(RTs) on Early (1–25) and Late (25–50) trials at each probability level. Over the course of a
context, participants became faster at responding to High and Mid probability stimuli and slower at responding to Low probability
stimuli. (C) Across drug groups, participants showed evidence of post-error slowing on correct trials that followed an erroneous
response compared to those following correct responses. (D) They also showed evidence of slowing on correct trials that
followed an infrequent stimulus transition. Results are mean ± SEM, corrected for the covariates Δalertness and body weight.
Results shown in A, B, and D were modulated by drug group. http://dx.doi.org/10.6084/m9.figshare.3796353.v1.

doi:10.1371/journal.pbio.1002575.g002
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computation of volatility uncertainty and estimation uncertainty respectively, while DA antag-
onism would impede motor adaptation to uncertain outcomes without perturbing the course
of learning.

Perceptual model. The HGF’s perceptual model tracks a participant’s learning of the
task’s structure: the trialwise stimulus transitions at level 1, the probability of the transitions

Fig 3. Hierarchical Gaussian Filter (HGF). (A) The perceptual model tracks an individual’s learning of the
task’s structure across three levels. State x1 represents trialwise stimulus transitions from one stimulus to the
next, x2 the probability of the transitions (i.e., transition contingencies), and x3 the phasic volatility, where t is
the current trial number. Participants hold and update beliefs about the true quantities at each level, with a
mean μ and a variance σ. W andω are participant-specific parameters that couple the levels and determine
the respective speed of belief updating about phasic volatility and transition contingencies. The response
model describes the mapping from a participant’s trialwise beliefs onto their observed log(RT) responses. (B)
Example of the trialwise dynamics at level 3 from Placebo Participant 2. μ3 reflects the participant’s belief
about the true phasic volatility (x3). Vertical dashed lines indicate true context switches. μ3 tends to increase
following a context change and then decreases over the course of a context as the participant learns the new
contextual rule and thus perceives the environment to be increasingly stable.

p
W is a variance determining

the step-size of μ3 and therefore how quickly the participant updates their phasic volatility estimates. (C) As
in B, but for precision-weighted contingency prediction error [PE] (ε3) at level 2. This estimate results from
weighting the contingency PE (δ2) by a precision ratio that captures uncertainty about input from the level
below relative to the level above. The higher the precision at level 2, the more meaningful a deviation from
the predicted stimulus transition contingency. This in turn increases the impact on phasic volatility belief
updating at level 3. For simplicity, we only depict the ε3 trajectory for true transition changes. (D) As in B and
C, but for sensory PE (δ1) at level 1. This estimate arises from irreducible uncertainty about stimulus
transitions. Trialwise values are equivalent to 1� x̂1, where x̂1 is equal to the participant’s trialwise prediction
of the occurring transition. Again, for simplicity we only show δ1 values for true transitions here. (E) Mean β
values for the Placebo group indicate that increases in sensory PE (β1), precision-weighted contingency PE
(β2), and phasic volatility estimates (β3) slowed participants’ trialwise log(RTs). There was also evidence of
post-error slowing (β4). Results are mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. http://dx.doi.org/10.
6084/m9.figshare.3796356.v1.

doi:10.1371/journal.pbio.1002575.g003
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(i.e., transition contingencies) at level 2, and the volatility of transition contingencies at level
3 (Fig 3A). Trialwise trajectories of each participant’s perceptual estimates at each level evolve
according to the predictions made and outcomes experienced by that individual (Fig 3B–3D).
At levels 2 and 3, these estimates are modelled by Gaussian distributions with a mean (μ) and
variance (σ), the latter reflecting the uncertainty of the estimate. Precision (π) of the estimate
is equal to inverse variance (1/σ). Irreducible uncertainty at level 1 gives rise to sensory PE,
δ1. Estimation uncertainty at level 2 gives rise to contingency PE, δ2. We can weight PEs
according to their precision (inverse uncertainty). At level 1, this gives us precision-weighted
sensory PE, ε2, and at level 2 precision-weighted contingency PE, ε3. Volatility uncertainty
arises from phasic volatility beliefs, μ3, at level 3. See Materials and Methods and S1 Text for
full details.

Importantly, the HGF does not assume fixed learning across the population but rather
contains participant-specific parameters that couple the hierarchical levels and allow
for individual expression of approximate Bayes-optimal learning. ϑ determines the speed
of learning about volatility, i.e., the rate at which estimates of phasic volatility (μ3) are
updated. As such, ϑ encapsulates metavolatility, i.e., the rate at which volatility changes, with
higher values implying a belief in a more unstable world and leading to a more variable learn-
ing rate (as expressed in phasic volatility belief updating). By contrast, ω is a constant compo-
nent of the volatility and captures how rapidly individuals generally update their beliefs
about transition contingencies at level 2. Changes in ω therefore lead to a tonic alteration of
the learning rate. Comparing ϑ and ω estimates for each of the drug groups to the Placebo
group allowed us to assess the effects of NA, ACh, and DA antagonism on perceptual belief
updating.

We note that while model-agnostic analyses can provide an indication of learning and pos-
sible drug effects, the model we endorse here permits us to probe (our best guess at) subjective
expectations about the transitions that are driven by data-limited observations. Moreover, it
separates the set of relatively complex and interacting factors that influence RTs in a computa-
tionally limpid way and provides us with insight into the individual effects of our pharmacolog-
ical manipulations.

Overall, the model tracked the true stimulus transitions well (Fig 4). We note that the model
is uninformed about the true stimulus transition probabilities but rather bases its estimates on
the observed stimulus transitions only. The punctate change points contained in the true gen-
erative process are detected implicitly by the HGF as an increase in learning rate (α1), which
reflects the influence of increased uncertainty and formally corresponds to a reduced contribu-
tion of belief precision (denominator in Eq 3) to the weighting of PE.

Moreover, when we categorise trials according to participants’ trialwise estimates of transi-
tion contingencies, as provided by model parameter μ̂1 (five bins: 0.8–1, 0.6–0.8, 0.4–0.6, 0.2–
0.4, and 0–0.2), we observe the same decrease in log(RT) with increasing transition probability
established in our model-agnostic results (cf. Fig 5 with Fig 2A; significant effect of μ̂1:
F1.67,185.64 = 17.56, p< 0.001, ηp

2 = 0.14). As in the model-agnostic results, this was modulated
by drug group (significant μ̂1 x drug interaction: F5.02,185.64 = 9.51, p< 0.001, ηp

2 = 0.20), but
not by Δalertness or body weight (both p> 0.11).

Response model. The response model describes the mapping from a participant’s percep-
tual trialwise beliefs, as provided by the perceptual model, onto their observed log(RT)
responses (Fig 3A). The response model we report in the following (Eq 1) describes log(RT)
as a linear function of a constant component of log(RT), sensory PE (δ1), precision-weighted
contingency PE (ε3), phasic volatility (μ3), post-error slowing, and Gaussian noise (z). (See
Materials and Methods and S1 Text for random effects Bayesian model comparison of
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alternative response models.)

logÖRTÜÖtÜ à b0 á b1ÖdÖtÜ1 Ü á b2Öε
ÖtÜ
3 Ü á b3Öm

ÖtÜ
3 Ü á b4ÖPostErrorÖtÜÜ á zÖtÜ Ö1Ü

All regression coefficients for the Placebo group were significantly greater than 0 (Fig 3E),
meaning that sensory PE (β1(δ1): t29 = 2.63, p = 0.010, d = 1.38), precision-weighted contin-
gency PE (β2(ε3): t29 = 3.74, p< 0.001, d = 1.97), and phasic volatility estimates (β3(μ3): t29 =
2.05, p = 0.043, d = 1.08) all had slowing influences on log(RT) and that there was evidence of
post-error slowing (β4(PostError): t29 = 3.09, p = 0.003, d = 1.62). Each of the drug groups
showed equivalent post-error slowing to the Placebo group (all p> 0.48; Fig 6H), mirroring
our model-agnostic result. The lack of a difference in the noise parameter z between the Pla-
cebo group and any of the drug groups (all p> 0.34; Fig 6C) indicates that the model’s ability
to predict log(RT) was unaltered under our drug manipulations. Comparing the regression
coefficients for each drug group to the Placebo group allowed us to assess whether NA, ACh,
and DA antagonism altered the mapping from perceptual beliefs onto motor responses.

Fig 4. True and estimated stimulus transition contingencies for two example participants. (A) Transitions between pairs of stimuli, from trial t-
1 to trial t, were defined by TMs. Every 50 trials, the TM switched to a different matrix. (B) Each panel corresponds to 1 of 16 possible transitions
between stimuli across 1,200 trials. The black lines indicate the true transition contingencies. The blue lines reflect the participant’s inferred estimates
(i.e., the posterior expectation of these contingencies, μ̂1), before seeing the stimulus outcome on each trial. The model tracked the true underlying
contingencies and detected change points. In a representative participant from the Placebo group, the model tracked the true transition contingencies
closely. An example participant from the ACh- group showed a greater discrepancy in the tracking of the true transition contingencies. This is
reflected in the two participants’ ω estimates: Placebo Participant 2 showed a higher transition contingency learning rate (ω = −3.27) than ACh-
Participant 16 (ω = −5.84). http://dx.doi.org/10.6084/m9.figshare.3796362.v2.

doi:10.1371/journal.pbio.1002575.g004
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The Influence of NA and ACh in Perceptual Uncertainty Computations

NA antagonism increased phasic volatility learning rate. The noradrenergic (α1-receptor)
antagonist prazosin increased the rate at which individuals updated their volatility estimates, as
reflected by an increase in ϑ (linear model: t59 = 2.11, p = 0.037, effect size Cohen’s d = 0.56; Fig
6A). A higher ϑ leads to greater fluctuations in participants’ phasic volatility estimates, μ3, result-
ing in a more variable phasic learning rate. By contrast, there was no effect on ω (p = 0.574; Fig
6B), indicating that the tonic learning rate about the probabilistic contexts remained unchanged.
We note that when we apply a Benjamini-Hochberg correction for three comparisons, the
reported effect of NA- on ϑ does not survive. However, we do observe a significant increase in ϑ
for the NA- group when we run permutation tests randomising over drug assignment (see S1
Text and S5 Table for details). Further, when we rerun the linear model analyses excluding body
weight, which was equivalent across drug groups (F3,120 = 2.24, p = 0.087), as a covariate, the sig-
nificant increase in ϑ for the NA- group survives the more stringent correction for three compar-
isons (t60 = 2.32, p = 0.022, d = 0.60), and all other reported significant effects are unchanged.

ACh antagonism slowed learning about stimulus transition contingencies. Muscarinic
ACh receptor antagonism under biperiden had more widespread perceptual effects. While ϑ
was again significantly increased compared to Placebo (t57 = 2.86, p = 0.005, d = 0.79), ω esti-
mates in the ACh- group were significantly reduced (t57 = −2.59, p = 0.011, d = −0.71). The
lower estimate of ω indicates that participants were slower to update their transition contin-
gency estimates under biperiden and thus slower to adapt to the probabilistic contexts.

DA antagonism had no effect on learning about task structure. The D1/D2 DA receptor
antagonist haloperidol did not influence the rate at which participants learned about the task’s
volatility or contextual transition contingencies compared to Placebo (ϑ and ω: both p> 0.23).

To summarise, both NA and ACh antagonism altered learning of uncertain events arising
from unexpected contextual changes in the environment. Only ACh antagonism disrupted
learning of transition contingencies within probabilistic contexts.

Fig 5. Model-based changes in log(RT) mirror our model-agnostic finding that participants learned
to predict the stimulus transitions. In all four groups, faster responses were observed as participants’
estimates of the true transition contingencies increased, mirroring our model-agnostic result (see Fig 2A).
Results are mean ± SEM, corrected for Δalertness and body weight. http://dx.doi.org/10.6084/m9.figshare.
3796401.v2.

doi:10.1371/journal.pbio.1002575.g005
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Fig 6. Model parameter results. (A–H) Compared to the Placebo group, NA and ACh antagonism modulated participants’ perceptual
belief updating. NA- increased the rate at which participants updated their volatility estimates (increased W). ACh- decreased the rate at
which participants learned about stimulus contingencies (decreasedω) and increased participants’ W estimates. DA- antagonism
decreased the sensitivity of participants’ trialwise responses to their phasic volatility estimates (β3). DA- and ACh- antagonism also
caused some general response slowing (β0). The three drug groups and the Placebo group showed equivalent post-error slowing (β4)
and Gaussian noise (ζ). Results are (mean Drug) − (mean Placebo), ± the standard error of the difference (SED) between the means of
the two samples and corrected for the covariates Δalertness and body weight. For uncorrected comparisons: * p < 0.05, ** p < 0.01,
*** p < 0.001. For corrections for three comparisons, +’s are used for Benjamini-Hochberg-corrected significance thresholds
at + p < 0.05, ++ p < 0.01, +++ p < 0.001. See S2 Table for Placebo group means. (I) First-level learning rate (α1) trajectories for truly
occurring trials from the Placebo group. Increases in α1 are observed following a true change in context. This α1 increase is amplified
for a more obvious switch from one easy-to-detect zeroth-order context to a different zeroth-order context. In contrast, a switch to an
alternating context, which is trickier to detect, is accompanied by a modest, more gradual increase in α1. Results are mean ± SEM.
http://dx.doi.org/10.6084/m9.figshare.3796407.v1.

doi:10.1371/journal.pbio.1002575.g006
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Neuromodulatory Effects on Response Modulation

NA antagonism had no influence on responses. The response model output revealed
no significant effects of NA antagonism on participants’ capacity to modulate their motor
responses according to their perceptual estimates of uncertainty (Fig 6E–6G).

ACh antagonism reduced response sensitivity to perceptual beliefs. Compared to Pla-
cebo, ACh antagonism reduced the sensitivity of participants’ motor responses to sensory PE
(β1: t57 = −3.25, p = 0.002, d = −0.90), precision-weighted contingency PE (β2: t57 = −2.56,
p = 0.012, d = −0.71), and phasic volatility estimates (β3: t57 = −3.91, p < 0.001, d = −1.08) (Fig
6E–6G).

DA antagonism reduced response sensitivity to phasic volatility. Compared to Placebo,
DA antagonism led to a decrease in the influence of phasic volatility estimates on log(RT)
(β3: t60 = −2.65, p = 0.009, d = −0.67; Fig 6G). This indicates that DA antagonism suppressed
the sensitivity of motor responses to higher-level inference.

In addition to the effects reported above, the log(RT) constant output indicated that sup-
pressing DA and ACh also led to some general log(RT) slowing (β0: t60 = 2.48, p = 0.015,
d = 0.62; t57 = 4.78, p< 0.001, d = 1.32, respectively; Fig 6D). SubjectiveΔalertness systemati-
cally modulated the effects observed on ϑ (t118 = 2.62, p = 0.010, d = 0.02), sensory PE
(β1: t118 = 2.52, p = 0.013, d = 0.02) and precision-weighted contingency PE (β2: t118 = −3.21,
p = 0.002, d = −0.02). None of the effects were systematically modulated by any between-group
differences in body weight (all p> 0.10).

Control Analyses

In S1 Text, we provide details of the physiological and subjective control measures. We also
provide additional assessments of the HGF model and its ability to provide a good fit to the
behavioural data by examining model parameter correlations, residuals and simulations (S2–
S6 Figs). Finally, we report the results of additional permutation tests (S5 Table), which allow
us to make distribution-free comparisons of the effects of our drug manipulations on the
model parameters.

Discussion

By implementing a novel probabilistic serial RT task in conjunction with three pharmacologi-
cal manipulations and placebo, we characterised the roles of three neuromodulatory systems
during perceptual belief updating and response selection. Leveraging a hierarchical Bayesian
learning model to decompose hierarchically related forms of uncertainty enabled us to pin-
point processes linked to NA, ACh, and DA. While manipulating NA and ACh modulated
perceptual uncertainty computations, DA receptor antagonism reduced the sensitivity of the
motor system to uncertainty estimates.

A key benefit of our pharmacological approach is that we were able to directly manipulate
the function of three different neuromodulatory systems and compare the resulting psycho-
pharmacological effects to a placebo condition. This is relevant given likely functional overlap
between the different neuromodulatory systems, as observed here. Indeed, manipulation of a
single neuromodulatory system, or use of a single drug, will be agnostic to such an overlap and
may make any one effect appear more relevant and specific than it is. We are also able to extend
interpretations of earlier neuroimaging studies [15,16], from which it is not possible to infer
with certainty that activations in particular brain regions, with inhomogeneous cellular compo-
sitions, reflect the activity of specific neuromodulatory neurons.
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Overlapping, but Dissociable, Noradrenergic and Cholinergic Influences
on Perceptual Belief Updating

We found considerable overlap in the influence of NA and ACh antagonism on perceptual
belief updating but also quantitative differences between drug conditions. While part-synergis-
tic, part-antagonistic interactions between the two neuromodulators during uncertainty pro-
cessing have been theorised previously [4], to our knowledge this is the first study to directly
assess these putative computational roles, and to distinguish them from dopaminergic effects,
under three pharmacological manipulations and within the same computational framework.
We propose that ACh guides probabilistic learning within environmental contexts, while NA
has a more circumscribed role in modulating the rate at which an agent learns about the volatil-
ity latent in the environment.

NA influences beliefs about unexpected environmental changes. Our results suggest
that NA antagonism under prazosin altered the rate at which individuals updated their volatil-
ity beliefs, as indicated by an increase in the model parameter ϑ. We note, however, that this
result should be interpreted conservatively since it did not survive correction for three compar-
isons. Nonetheless, a permutation test, without any distributional assumptions, mirrored the
result of the uncorrected comparisons (see S5 Table). Moreover, the result did survive correc-
tion when body weight (which was equivalent across drug groups) was excluded as a covariate
from the linear model analyses. An influence of NA- on ϑ fits with the theorised role for NA in
computing uncertainty arising from changes in environmental context [4]. Numerous studies
have offered evidence that the NA system is sensitive to highly unexpected events that arise
from a hidden contextual change. Noradrenergic neurons in the rat and nonhuman primate
LC are responsive to environmental novelty and unexpected changes in reward contingencies
[48–50,85]. Additionally, changes in pupil diameter, attributed at least in part to noradrenergic
LC activity [53,68,86], have been shown to correlate with unexpected outcomes [54,55].

More specifically, in the present study we observed faster volatility belief updating following
NA antagonism. In our model, ϑ represents the volatility of the volatility, and thus, our results
suggest that NA stabilises an agent’s estimate of environmental volatility. This is compatible
with the notion that the volatility estimate has a relatively low baseline level, to which it returns
after being pushed away. In a volatile environment, this is not an adaptive feature. Rather, the
volatility estimate should remain high to enable revision of one’s beliefs. It is possible that NA
prevents the volatility estimate from falling by reducing an agent’s ϑ estimate.

The neurophysiological literature has distinguished two functional modes of LC noradrener-
gic release [44,87]. A phasic mode, characterised by a relatively low baseline firing rate and high
phasic responsiveness to task relevant stimuli, has been linked to enhanced task engagement,
and a tonic mode to increased distractibility, attention shifting, and exploratory behaviour [87–
89] (but see Jepma et al. [90]). More recently, human LC BOLD activity was demonstrated to
correlate with “unexpected uncertainty” induced by a switch in reward probabilities associated
with familiar stimuli [16], although the negative sign of this correlation still seems to lack expla-
nation. In both our task and that used by Payzan-LeNestour et al., contextual switches required
participants to identify discrete changes in underlying transitions between familiar stimuli. To
continue making accurate predictions in light of new transition probabilities, participants had
to increase their attentional engagement to facilitate an augmented learning rate. It is likely that
in both cases a phasic LC activity mode was recruited and that this would be recognised as a
decrease in BOLD activity at a neural population level. Speculatively, it also suggests that our
pharmacological NA manipulation may have enabled more phasic NA responsiveness to
emerge under suppression of tonic NA firing. Future investigations of the impact of noradrener-
gic drugs on LC activity profiles are needed to validate this theory.
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ACh balances the attribution of uncertainty within and between environmental con-
texts. Muscarinic ACh receptor antagonism by biperiden led to slower updating of beliefs
about stimulus transition contingencies, and therefore slower adaptation to the probabilistic
contexts, as reflected by a decrease in the model parameter ω. We argue that this slowed adap-
tation also had knock-on effects higher up in the inferential hierarchy. Namely, we propose
participants attributed perceived violations of their expectations to gross contextual switches as
opposed to chance fluctuations in stimulus outcomes, which would be expressed as an increase
in ϑ. In light of previous work, which we discuss next, it seems reasonable to suggest that by set-
ting the rate at which an agent learns probabilistic associations, ACh facilitates the appropriate
attribution of violated expectations to chance fluctuations in an environment’s statistical regu-
larities or to gross switches in environmental context.

According to the structure of our Bayesian model, a reduction in ω maps onto a reduced
precision weighting of perceptual belief updates at level 2; compare Eq 2 and Equation B in S1
Text. Our findings indicate that under biperiden less weight was given to sensory evidence, and
updates of probability estimates became more reliant on current beliefs. This supports pro-
posed roles for ACh in regulating the relative influences of stimulus-driven versus expectation-
guided processing [52,91] and attentional deployment [37,40]. For instance, it has been shown
that pharmacologically stimulating ACh augments bottom-up sensory signalling in human pri-
mary auditory cortex in response to auditory stimuli, possibly by enhancing the gain of superfi-
cial pyramidal cells, to bias inference towards sensory data [30].

In a recent study, Vossel et al. examined perceptual belief updating during a probabilistic
attentional cueing paradigm. By applying a similar instantiation of the HGF to saccadic RTs,
the authors demonstrated faster learning about contextual probabilities following administra-
tion of galantamine, an acetylcholinesterase inhibitor which increases the synaptic availability
of ACh, as indicated by an increase in model parameter ω [17]. In the present study, we observe
the opposite behavioural effect with the opposite pharmacological manipulation (ACh receptor
antagonism), offering independent evidence that ACh signalling guides belief updating about
probabilistic associations within environmental contexts.

Our results also indicate that ACh antagonism led individuals to update their volatility esti-
mates more rapidly, reflected by an increase in the model parameter ϑ. This is consistent with
the notion that ACh- participants’ impaired ability to learn transition contingencies led them
to infer that contexts changed at a faster rate. Notably, in their theoretical framework, Yu and
Dayan predicted that ACh depletions should cause an agent to underestimate the amount of
randomness in a given context. In turn, this causes chance events occurring within a context to
seem more significant than they are, and thus, they are more likely to be incorrectly taken as
indicative of a context change (see Fig 6D in Yu and Dayan 2005 [4]). Our experimental obser-
vations support this hypothesis and are compatible with data indicating that cholinergic antag-
onists increase distractibility [92], while agonists suppress it [93–95].

We note that, although the quantities used in this current work are not identical to those
previously introduced by Yu and Dayan 2005 [4], the HGF does embody versions of the same
forms of uncertainty. The highest level of uncertainty in Yu and Dayan’s (YD’s) framework
was induced by abrupt, discrete changes in contingencies, which induced what YD call “unex-
pected uncertainty” (and ascribed to NA). By contrast, the highest level of uncertainty in the
HGF is the overall instability of the world, i.e., the rate at which volatility changes. It is this that
we found to be modulated by our NA antagonist. Conversely, YD’s notion of “expected uncer-
tainty” (ascribed to ACh) suggests that it arises from the known unreliability of predictive rela-
tionships within a familiar environmental context. Amongst other effects, the lower the
expected uncertainty, the slower the learning—consistent with the effect of parameter ω in the
HGF, which was found to decrease under cholinergic antagonism. Along with YD, we also
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argue that this change in learning has further knock-on effects for what participants perceive to
be a chance random event or a change of context (and hence unexpected uncertainty).

In sum, our findings offer empirical support for the theoretical proposal that ACh and NA
interact to construct appropriate cortical representations of volatile contexts, which facilitates
optimal inferences about the current environment [4]. By regulating high-level uncertainty
representations, the two neuromodulators contribute to the updating of one’s perceptual
beliefs, both within and between environmental contexts, an idea that is broadly supported by
recent neuroimaging [15,16] and pharmacological [17] evidence.

DA Sensitises Motor Responses to Environmental Volatility

As per its construction, our computational model allowed us not only to characterise percep-
tual belief updating under our three pharmacological manipulations but also to assess how
each intervention influenced the deployment of motor responses in response to individual esti-
mates of uncertainty. Pharmacologically manipulating DA and ACh altered the degree to
which participants’ perceptual beliefs modulated the preparation of their speeded responses to
uncertain stimuli. In contrast, NA antagonism had no significant impact on the sensitivity of
participants’ motor responses to their current perceptual beliefs relative to placebo.

We had originally predicted that an individual’s capacity to modulate response selection fol-
lowing a sensory PE would be dependent on DA. Indeed, it has previously been shown that
pharmacological DA depletion impedes adaptive reactions to unexpected events occurring
within predictable contexts [58]. However, in the present study, we found no evidence that DA
receptor antagonism influenced participants’ reactions to low-level sensory PE (δ1). Rather, we
observed that suppressing DA significantly reduced β3, which we interpret as a reduction in the
sensitivity of participants’ motor responses to their higher-level volatility estimates (μ3).

It is important to note that some key differences distinguish our present experimental
design from previous paradigms. In earlier work, participants were pre-trained to respond to
stimuli presented within one predictable context, defined by one TM. Furthermore, switches
from predictable to unpredictable contexts, consisting of random presentations of stimuli, were
explicitly signalled [58]. Therefore, any probabilistic learning and higher-level perceptual
uncertainty were removed. In this earlier setting, dopaminergic antagonism under haloperidol
selectively impaired participants’ reactions to unexpected events that elicited large sensory PEs.

In contrast, our present task created a more complex, and arguably more ecologically valid,
scenario in which individuals had to infer the current context for themselves and adapt to any
contextual changes. Here, uncertainty representations had to be acquired through direct sam-
pling from a distribution of observations. To our knowledge, our study is the first attempt to
interrogate the impact of DA, ACh, and NA on nonrewarded probabilistic learning within a
single behavioural paradigm and a unified Bayesian framework. By estimating beliefs about
various forms of uncertainty, we sought to identify neuromodulatory contributions specifically
related to particular forms of uncertainty, as opposed to any confounding variables.

Our finding that haloperidol reduced the sensitivity of participants’ responses to their phasic
volatility estimates does sit well with an alternative line of work highlighting the importance
of DA in cognitive switching [61,62]. For instance, Parkinson’s disease patients with DA dys-
function have an impaired capacity to switch from naming digits to letters when both types of
stimuli are presented simultaneously, even when the task shift is explicitly cued [60]. In sum-
mary, we propose that our DA manipulation suppressed response modulation by impeding
cognitive switching following complex contextual rule changes.

Muscarinic ACh receptor antagonism under biperiden also led to decreased response mod-
ulation by parameters at all three hierarchical levels: sensory PE (δ1), precision-weighted
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contingency PE (ε3), and phasic volatility estimates (μ3) compared to Placebo. We propose
that ACh receptor antagonism impeded participants’ abilities to learn the statistical structure
of the behavioural task, which in turn impaired their capacities to respond accordingly.
Although both ACh and DA had effects on response modulation, in light of previous work,
we suggest that DA’s role is to modulate motor responses according to the widespread percep-
tual effects of ACh.

Limitations and Future Work

One of the main constraints of our study is that although prazosin, biperiden, and haloperi-
dol are rather selective for NA, ACh, and DA receptors, respectively, there are complex inter-
actions and dependencies between noradrenergic, cholinergic, and dopaminergic systems.
Such interactions are a main reason why direct quantitative comparison between drug groups
would not have provided direct comparisons between the action of different neuromodula-
tors and therefore why our study was designed to detect changes relative to placebo instead.
While our results highlight qualitative differences in how NA, ACh, and DA influence per-
ceptual belief updating, future work will have to conduct direct quantitative comparisons of
their roles.

Further, it is the receptors rather than the neuromodulators themselves that bring about
psychophysiological effects, and there are dissociable roles of different receptor subtypes. For
instance, the functions of nicotinic versus muscarinic cholinergic receptors in uncertainty sig-
nalling have yet to be directly compared. Distinctions have also been made between D1 and D2
dopaminergic receptor subtypes in regulating adaptive responses to unexpected stimuli [58].
Thus, future work could usefully be extended with genetic profiling and a range of selective
agonists and antagonists for different receptor subtypes.

Finally, it is likely that all the neuromodulators operate over multiple timescales. For
instance, separate, even competing, tonic and phasic effects have been a special target of inves-
tigation for NA. Teasing these timescales apart more fully is an ambition for the future, requir-
ing a temporally richer design.

Nevertheless, our findings emphasise the necessity of studying the systems conjointly, as
tasks associated with uncertainty will tend to involve them all.

Conclusion

In summary, our results offer novel and direct insight into the complex and intricate effects of
NA, ACh, and DA during a probabilistic serial RT task. Employing a hierarchical Bayesian
learning model that allowed us to assess various forms of uncertainty and PEs, we provide
interventional evidence linking ACh and NA to uncertainty computations within and between
behavioural contexts. In contrast, DA appears to be involved in sensitising motor responses to
perceptual volatility estimates. While pharmacological manipulations do not selectively target
particular neuromodulatory systems, our results offer a fresh perspective on the effects of nor-
adrenergic, cholinergic, and dopaminergic neurotransmission on the computational mechan-
ics of perceptual belief updating according to Bayesian principles. Future studies will verify
the generality of our observed effects to different behavioural paradigms with and without
learning, reward, prediction, and action. By characterising uncertainty computations and
response modulation, our methodology can also be used to offer fresh insight into the numer-
ous neurological and psychiatric disorders in which there is dysregulation of processes depen-
dent on NA, ACh, and DA.
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Materials and Methods

Participants

A total of 128 healthy participants (56 male, aged 18–38 y, 119 right-handed) with normal or
corrected-to-normal vision undertook this study. Participants gave written informed consent
in accordance with the Declaration of Helsinki. The experimental protocol was approved by
the UCL Research Ethics Committee (Project ID: 3491/001). The following exclusion criteria
applied: history of neurological or psychiatric disease, intake of medication (other than contra-
ceptives), smoking, recreational drug use, and current participation in other pharmacological
studies. Following a screening interview to rule out intolerances or contraindications, the study
clinician (DR) assigned participants pseudorandomly (i.e., ensuring a balanced distribution of
gender, age, and body weight) to receive a NA, ACh, or DA antagonist or a placebo. All other
authors, including the experimenter (LM), were blind to the drug conditions.

General Procedure

We employed a double-blind, between-subject design. Each participant attended one experi-
mental session during which they received a single oral dose of one of the following: 1 mg pra-
zosin (α1-receptor antagonist; NA- group), 6 mg biperiden (M1-receptor antagonist; ACh-
group), 2.5 mg haloperidol (D1/D2-receptor antagonist; DA- group), or a placebo. We selected
doses that were in line with previous studies showing clear behavioural and neurophysiological
effects [58,96–98]. On arrival, participants completed computerised versions of the Digit Span
test, Barratt Impulsiveness Scale (BIS-11) [99], Doman-Specific Risk-Taking (DOSPERT) Scale
[100], and Cognitive Failures Questionnaire (CFQ) [101]. Participants also self-reported their
baseline mood (alertness, calmness, and contentedness) with visual analogue scales (VASs)
[102], and we measured their baseline heart rate (HR) and blood pressure (BP). To assess any
subjective and/or physiological drug effects, the VAS, HR, and BP measurements were repeated
before participants started the RT task and again once they completed it.

Two different drug administration times were used to match peak plasma concentration
across drugs, based on previous pharmacokinetic data. To ensure that participants undertook
the RT task when the drug was at its most active, haloperidol was administered 2 h in advance,
while prazosin and biperiden were administered 1.5 h before the main experimental session
[96–98]. A random 50% of participants from the Placebo group were administered a placebo
tablet at the first time point, and the other 50% at the second time point. The study clinician
administered the drug or placebo while the experimenter was away from the testing room. Par-
ticipants were asked not to eat for at least 1 h before the first drug administration time.

Probabilistic Serial RT Task

Participants sat facing a computer screen positioned approximately 60 cm away. They were
instructed to rest their left and right index and middle fingers on the four buttons of a custom-
made button box placed in front of them and to maintain this position throughout the task. On
each trial, participants were required to respond to the presentation of one of four visual sti-
muli by pressing an appropriate button as quickly as possible. Each stimulus was associated
with one particular button. The stimulus-response mappings remained consistent within an
experimental session but were counterbalanced across participants. Each participant acquired
the stimulus-response mappings for their session during a training block in which they
received visual error feedback after each trial. The training session comprised at least 100 trials
and did not finish until the participant had reached a minimum performance criterion of 85%
accuracy on the last 20 trials. Participants were then given 40 practice trials, in which the
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stimuli were presented in a random order and without error feedback, to familiarise them with
the timings of the main experiment. An additional refresher block, consisting of at least 26 tri-
als with error feedback, was completed immediately before the main experiment. Again, partic-
ipants had to achieve 85% accuracy in the last 20 trials to proceed. On average, participants
reached this criterion in 28.1 ± 1.1 trials, indicating adequate learning and retention of the
mappings. There was no difference in the number of refresher trials required between groups
(F3,120 = 1.17, p = 0.324).

Each participant performed 1,200 trials of the probabilistic RT task. Fig 1A shows an example
trial sequence. Anticipatory responses (<80 ms RT) were recorded as incorrect. At any given
time, the trial sequence was generated by one of eight TMs, which changed every 50 trials. In
each case, there were 16 combinations that determined the probabilistic relationship between
the stimuli presented on the current trial, t, and the previous trial, t-1. Three types of TM were
utilised: first-order sequences, alternating sequences, and zeroth-order sequences (see Fig 1B
and S1 Fig for further details). The order of TMs was pseudorandom, with no consecutive
repeats. Importantly, the overall probability of each stimulus was equal across the 1,200 trials.

The pseudorandom order of TMs was used to generate one stimulus sequence that was used
for all participants to ensure comparable learning processes and model parameter estimates.
Rest periods occurred every 185 trials, orthogonal to TM switches. The importance of fast
responses was stressed. Participants were told that by paying attention to any patterns in the
order in which stimuli were presented and to any switches in these patterns, it might be possi-
ble to respond faster. No further information about the nature of the experiment was provided.

Combining our behavioural paradigm with three pharmacological manipulations allowed
us to assess directly any separable roles for NA, ACh, and DA in belief updating under irreduc-
ible uncertainty, estimation uncertainty and volatility uncertainty and in sensitising the motor
system to participants’ individual perceptual beliefs. At the end of the experimental session,
participants were debriefed, indicated whether they thought they had taken an active drug or
placebo, and reported the quality and quantity of their sleep on the previous night [103].

Model-Agnostic Analyses

Trialwise RT was calculated as the time between stimulus onset and the subsequent button
press. The RT data were log transformed [58]. To assess the interaction between stimulus tran-
sition probability and drug, trials were binned according to three probability levels correspond-
ing to the presented stimuli’s true conditional probabilities as existed in the TMs (High: 0.85
and 0.70; Mid: 0.25 and 0.20; Low: 0.05) [58,59]. Mean log(RTs) for each participant’s correct
responses were compared across these three probability levels and between drug groups. To
obtain a model-agnostic indication of learning across the course of the probabilistic contexts,
we performed a median split on each 50-trial contextual block and compared correct mean log
(RTs) on Early (1–25) and Late (26–50) trials at each probability level and between drug
groups. In reporting statistical differences, a significance threshold of α = 0.05 was used. Where
assumptions of sphericity were violated (Mauchly’s test p< 0.05), the Greenhouse-Geisser cor-
rection was applied. For comparisons across the four groups, partial eta-squared (ηp

2) is
reported as the effect size. For planned pairwise comparisons between each drug group and
Placebo, we applied a Benjamini-Hochberg correction for three comparisons to the significance
threshold. For pairwise comparisons, Cohen’s d is reported as the effect size.

Model-Based Analyses

Model-based analyses permit quantification of the inferences participants made during the
task and decomposition of the impact of different forms of uncertainty. Hierarchical Bayesian
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models have proven powerful for explaining the adaptation of behaviour to probabilistic con-
texts in volatile environments [1,15,17,70,72–74,84,104,105]. Here we developed a novel
instantiation of the HGF model [9] with a focus on TMs and two components: a three-level
perceptual model and a response model (Fig 3A). We implemented the model using the HGF
Toolbox (http://www.translationalneuromodeling.org/tapas/). Matlab (Mathworks, United
States) code can be downloaded directly from http://www.tnu.ethz.ch/de/software/tapas/
download.html. Note that, for the present study, we used the tapas_logrt_linear_whatworld
family of scripts. The HGF is unconstrained by normative optimality assumptions of “ideal
Bayesian” models that enshrine the true characterisation of the task (or alternatively Bayesian
hierarchical uncertainty about this true characterisation) [76,106,107]; instead, it allows for
interindividual variability in learning by fitting parameters that determine a participant-spe-
cific approximation to Bayes optimality.

Perceptual model. The perceptual model is a variant of the HGF as introduced in Mathys
et al. [9,10]. It tracks a participant’s learning of the task’s structure in a similar way to previous
studies using the HGF [15,17,70–74]. The HGF is a generative model of observed data that pro-
vides a mapping from hidden states of the world(x) to sensory inputs (u). Unlike previous
applications of the HGF, in this application the data are observed transitions between stimuli
that arise from a sequence of environmental states (x1), where we use bold font to indicate a
matrix. In our experiment, the jkth element of x1 is the transition from stimulus k to stimulus j,
the probability of which participants must learn to perform the task well. There are 16 possible
transitions induced by the trialwise presentation of one of four visual stimuli, meaning that x1

is a four-by-four matrix. On each trial, an agent observes a sample from one column of the
TM. Therefore, the current transition in the corresponding column of x1 is 1, with all other ele-
ments in that column equal to 0.

The HGF comprises two parts: a generative (or forward) model that describes how data are
generated, including the effect of such facets as the changing contexts, and a recognition model
that performs (approximate) statistical inference on the observations of the actual data in order
to determine the distribution over the values of random variables in the generative model
appropriate to those particular observations. In contradistinction to models that assume that
participants fashion the generative process to the task at hand, the HGF offers an inclusive
scheme for explaining behaviour that generalises to a multitude of situations requiring hierar-
chical inference about the state of the world.

In the present application of the HGF, the generative model has two further levels above x1.
Level 2 is a four-by-four matrix x2 of real numbers governing the transition contingencies. These
undergo random walks with increments that are independent of each other. At level 3, x3 sets the
variance of those random walks and therefore the rate of change (or volatility) of the elements of
x2. Since we assume that all the elements experience the same volatility (see Mathys et al. 2011;
2014), x3 is a scalar. Collectively, x2 and x3 capture stimulus transitions and their changes over
time (albeit represented heuristically as a continuous random walk in logit space with a bijective
mapping to the probability of specific discrete changes). More specifically, a sample of x1 is gen-
erated by applying a logistic sigmoid transformation to the column of x2 associated with the
stimulus that was previously shown, to generate a probability distribution over the four possible
next stimuli (see S1 Text for details). A sample is then drawn from that distribution.

The recognition part of the HGF takes observations of x1 and infers approximate posterior
distributions over the values of x2 and x3. This amounts to a variant of predictive coding in
which beliefs are dynamically updated across the levels via PEs that are weighted by their
salience, or expected precision (equivalent to inverse variance, or uncertainty). Estimates of
stimulus transition probabilities, i.e., the posterior distribution over x2, correspond to the pos-
terior distribution over x2 and are updated by PEs about stimulus occurrences. Estimates of
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environmental volatility, i.e., the posterior distribution over x3, are updated in proportion to
PEs about the transition contingencies. Thus, the effective learning rate is influenced by uncer-
tainty about current beliefs and environmental stability.

More precisely, trial by trial, participants update their beliefs about the true quantities at
each level, which at levels 2 and 3 are modelled by Gaussian distributions with a mean (μ) and
variance (σ), the latter reflecting the uncertainty of the estimate. Precision (p̂) of the prediction
is equal to the inverse variance (1=ŝ), where the hat denotes the participant’s predicted esti-
mate before seeing the stimulus outcome on each trial. At level 1, when the elements of x2 are
each transformed by the logistic sigmoid to produce probabilities x̂1 there is irreducible uncer-
tainty (the participant’s estimate of which is written as μ̂1), which gets its name since it is undi-
minished by learning [11]. Irreducible uncertainty arises from any probabilistic relationship
and is closely related to entropy, with an inverted-U relationship to probability that peaks at
p = 0.5. The quantity gives rise to sensory PE (δ1) following the presentation of an unexpected
stimulus that would require a participant to respond against their expectation.

Note that we do not enforce columnwise normalisation of x̂1 (i.e., the columns do not neces-
sarily add up to one, as they would have to in order to represent a proper probability distribution
over mutually exclusive events). We argue that ensuring that the probabilities sum to one would
require a sort of certainty about the stimuli that participants do not necessarily have when per-
forming the task; for instance, it would require precise a priori knowledge that each and every
trial will present exactly one of four stimuli and that there is no possibility of novel stimuli occur-
ring during the experiment. In practice, the statistics governing the sensory events that occurred
in our task ensure that column sums of participants’ μ̂1 estimates never stray far from unity.

At level 2, ŝ2, which is informational in origin, represents estimation uncertainty about the
true probabilistic relationships governing stimulus transitions, giving rise to a more abstract
contingency PE (δ2). At level 3, volatility uncertainty arises from the environment’s volatility,
i.e., how quickly the transition contingencies are changing.

Generally, at any level i of the hierarchy, the update of the belief on trial t (i.e., posterior
mean μÖtÜi of the state xi) is proportional to the precision-weighted PE, εÖtÜi . This weighted PE is
the product of the upward-propagating PE, δÖtÜi�1, and a precision ratio, cÖtÜi (see S1 Text for
details), capturing the uncertainty about input from the level below relative to the uncertainty
about the state of the level being updated [15]. A general and didactically useful form of this
precision-weighted PE (with subtle differences below level 3; see Mathys et al. 2014 [10]) is:

DμÖtÜi / εÖtÜi à cÖtÜi dÖtÜi�1; Ö2Ü

cÖtÜi à
p̂ÖtÜi�1

pÖtÜi

: Ö3Ü

Thus, precision-weighted sensory PE (ε2) is weighted by uncertainty at levels 1 and 2, and
precision-weighted contingency PE (ε3) by uncertainty at levels 2 and 3. The punctate change
points contained in the true generative process are detected implicitly by the HGF via spikes in
the precision weights. At levels 2 and 3, aÖtÜi is proportional to the precision ratio, cÖtÜi , defined
in Eq 3. At level 1, the learning rate α1 is simply defined as the update divided by the PE:

αÖtÜ1 /
μÖtÜ2 � μ̂ÖtÜ1

δÖtÜ1

: Ö4Ü

Two participant-specific perceptual parameters, ϑ and ω, couple the hierarchical levels and
allow for individual expression of approximate Bayes-optimal learning. ϑ determines the speed
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of learning about the volatility of the environment, i.e., the rate at which estimates of trialwise
phasic volatility (μ3) are updated. Higher ϑ values imply a belief in a more unstable world and
lead to a more variable learning rate. By contrast, ω is a constant component of the volatility
and captures a tonic learning rate about stimulus transition contingencies (see Fig 3A and S1
Text for details).

Response model. The response model describes the mapping from a participant’s trialwise
beliefs, as provided by the perceptual model, onto his/her observed responses, log(RTs). We
reasoned that there are several variables that could influence trialwise log(RT). Therefore, we
constructed and compared three response models using random effects Bayesian model com-
parison [108,109] and associated techniques for assessing differences in model frequencies
across groups as implemented in the VBA toolbox [110]. Each model proposed that log(RT)
on any given trial is a linear function of a constant component of log(RT) and several other fac-
tors. Since there is evidence, both from earlier work [80–83] and the present study, that partici-
pants’ RTs increase on a trial following an incorrect response, we included post-error slowing
in each response model. While the perceptual model assumed that participants updated their
beliefs according to the stimulus presented on each trial, the response model incorporated cor-
rect trials only.

The extra factors in the different models came from quantities at each level of the HGF that
might influence log(RT). The first response model contained the following parameters: δ1 (sen-
sory PE), because of evidence that DA sensitises motor responses to low-level PE [58,59]; ε3

(precision-weighted contingency PE), which has been shown to correlate with activity in the
cholinergic basal forebrain [15]; and μ3 (estimated phasic volatility), which is relevant to cogni-
tive switching tasks for which there is a proposed role for DA. For each parameter, the quantity
relates to the stimulus transition that actually occurred on each trial. z is Gaussian noise.

Response Model 1:

logÖRTÜÖtÜ à b0 á b1ÖdÖtÜ1 Ü á b2Öε
ÖtÜ
3 Ü á b3Öm

ÖtÜ
3 Ü á b4ÖPostErrorÖtÜÜ á zÖtÜ Ö5Ü

Alternative research has indicated that activity in the dopaminergic midbrain correlates
with the precision-weighted form of sensory PE, ε2 [15]. To disambiguate whether motor
responses are modulated according to raw sensory PE or the confidence one has in their sen-
sory predictions, our second model contained ε2 instead of δ1.

Response Model 2:

logÖRTÜÖtÜ à b0 á b1Öε
ÖtÜ
2 Ü á b2Öε

ÖtÜ
3 Ü á b3Öm

ÖtÜ
3 Ü á b4ÖPostErrorÖtÜÜ á zÖtÜ Ö6Ü

Since δ1 and ε2 are highly correlated, we also constructed a third response model containing
both parameters so as to ascertain whether one had a higher degree of explanatory power in
terms of determining log(RT).

Response Model 3:

logÖRTÜÖtÜ à b0 á b1ÖdÖtÜ1 Ü á b2Öε
ÖtÜ
2 Ü á b3Öε

ÖtÜ
3 Ü á b4Öm

ÖtÜ
3 Ü á b5ÖPostErrorÖtÜÜ á zÖtÜ Ö7Ü

Random effects Bayesian model comparison established that Response Model 1 (containing
parameters δ1, ε3, and μ3) was superior in all four pharmacological groups by a considerable
margin: for the Placebo, NA-, ACh-, and DA- groups respectively, the posterior model proba-
bilities were 0.911, 0.828, 0.636, and 0.829; protected exceedance probabilities (i.e., the proba-
bility that Response Model 1 is more likely than any other model in the comparison set) were
1.000, 1.000, 0.964, and 1.000 (Fig 7). Moreover, no significant difference in model frequencies
between the Placebo group and any of the drug groups was identified (NA- versus Placebo:
p = 0.958, ACh- versus Placebo: p = 0.560, DA- versus Placebo: p = 0.955). To further verify
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that Response Model 1 offered the best means by which to explain trialwise log(RT), we also
compared a more exhaustive set of models containing different combinations of parameters
from the HGF (see S3 and S4 Tables for details). Again, Response Model 1 was found to be
superior and was therefore used for all subsequent analyses.

Model fitting. For each participant, individual maximum a posteriori estimates for per-
ceptual and response model parameters were jointly obtained using the Broyden-Fletcher-
Goldfarb-Shanno algorithm as implemented in the HGF Toolbox. Where priors were required,
we defined them by inverting the perceptual model in isolation, given the known stimulus
sequence (using the function “tapas_bayes_optimal_whatworld_config”), under suitably unin-
formative priors. We then used the resulting posterior estimates to define our priors for the
subsequent inversion of the full model given the behavioural data (see S1 Table). In other
words, the prior means in our empirical data analysis corresponded to those parameter values
for which our stimulus sequence would generate minimal surprise (in an observer with the
aforementioned uninformative priors).

Our key question pertained to how different neuromodulators influence learning and
response modulation. Therefore, to make planned comparisons between the three active drug
groups (NA-, ACh-, and DA-) and the Placebo group, we fit linear models separately for each
participant-specific parameter (ϑ, ω, and each β, respectively), with additional covariates (body
weight and Δalertness). For pairwise comparisons, Cohen’s d was used as a measure of effect
size. In Fig 6, we present the results of the uncorrected, planned pairwise comparisons taken
from each linear model and those that survive a Benjamini-Hochberg correction for three pair-
wise comparisons, i.e., between each drug group and Placebo.

Control Analyses

We validated our model parameter results using permutation tests. Moreover, to further illus-
trate the implications of different model parameters and to demonstrate that the HGF provided
a good fit to the behavioural data, we assessed the correlations between model parameters, ana-
lysed residuals, and used the HGF to generate simulated log(RT) data. Please see S1 Text for
details.

Supporting Information

S1 Fig. Probabilistic structure of the experimental task. At any given time, the trial sequence
was generated by one of eight TMs, which changed every 50 trials. In each case, there were 16
combinations that determined the probabilistic relationship between the stimuli presented

Fig 7. Random effects Bayesian model comparison confirmed that Response Model 1 was superior in all four groups. Posterior probabilities
quantify the likelihood of each model given the data. Protected exceedance probabilities quantify how likely it is that any given model is more frequent
than all other models in the comparison set while also protecting against the possibility that the observed variability in (log-) model evidences could be
due to chance. The dotted line indicates the threshold for chance-level posterior probabilities (0.33). http://dx.doi.org/10.6084/m9.figshare.3796413.v1.

doi:10.1371/journal.pbio.1002575.g007
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on the current trial, t, and the previous trial, t-1. TMs 1 and 2 generated first-order stimulus
sequences in which there was a high probability of the sequences 1-2-3-4 and 4-3-2-1 occur-
ring, respectively. TMs 3 and 4 resulted in a high probability of alternating between two stimuli.
TMs 5–8 were zeroth-order and led to one stimulus occurring with a high probability, one
stimulus with a mid-range probability, and two stimuli with a low probability. Over the course
of the experiment, each of the TMs occurred three times in a pseudorandom order, with no
consecutive repeats. The overall probability of each stimulus was equal across 1,200 trials.
(TIF)

S2 Fig. Model parameter correlations. Unless stated otherwise, Bayesian parameter averages
(BPAs) and posterior means for the model parameters were only moderately correlated across
groups (all absolute r< 0.660 for BPAs and r< 0.716 for posterior means). Higher correlations
existed between BPAs for ω (transition contingency learning rate) and μ3_0 (the initial phasic
volatility estimate) (r = −0.948, −0.764, −0.771, and −0.983 for Placebo, NA-, ACh-, and DA-,
respectively). Higher correlations also occurred between the BPAs (r = −0.877, −0.736, −0.630,
and −0.880) and mean posteriors (r = -0.938, -0.947, -0.873, and -0.893) for β0 (log(RT) con-
stant) and β3(μ3) (the sensitivity of log(RTs) to phasic volatility estimates). σ3_0 is the initial
value of σ3 (the uncertainty about the phasic volatility estimate). http://dx.doi.org/10.6084/m9.
figshare.3796434.v1.
(TIF)

S3 Fig. Residuals between observed log(RTs) and log(RTs) predicted by the HGF. The dis-
tribution of residuals suggests that, across drug groups, the model captured any patterns in the
data well. Data are mean ± SEM. http://dx.doi.org/10.6084/m9.figshare.3796443.v1.
(TIF)

S4 Fig. Autocorrelation between residuals across trials indicate that the model did not sys-
tematically under- or overestimate log(RTs) at true change points. Data are mean ± SEM.
http://dx.doi.org/10.6084/m9.figshare.3796446.v1.
(TIF)

S5 Fig. Mean log(RTs) for empirical and simulated data. Empirical data (filled bars) indi-
cated that log(RT) increased as a stimulus’ true transition probability decreased. Simulated
data (unfilled bars) generated using the posteriors for each participant in the Placebo group as
model parameters faithfully reflect the empirical Placebo data. By shifting the parameters sig-
nificantly altered by our different drug manipulations by the difference between the Placebo
group mean for those parameters and the relevant drug-group mean, we simulated log(RT)
data comparable to the empirical data observed in each drug-group. Note that there are no
post-error slowing effects in the simulated data. Data are mean ± SEM. http://dx.doi.org/10.
6084/m9.figshare.3796449.v2
(TIF)

S6 Fig. Responses to high probability events become faster with learning but are slower
after change points. (A) Mean baseline-corrected RTs for the first 25 (High-probability) trials
in each context, where the baseline is the mean RT of the last three High-probability trials in
the previous context. RTs increase following a true change point but fall as participants learn
the new contextual rule. (B) As in A, but for simulated RTs. The model neatly captures the
increase in RTs following true change points, the reduction in RT that occurs with learning
across the course of the new context, and the suppressed effect of both in the ACh- group.
http://dx.doi.org/10.6084/m9.figshare.3796452.v2.
(TIF)
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S1 Table. A summary of HGF parameters and priors. All priors are specified in the space in
which they are estimated. For an account of how this relates to the native space of that parame-
ter, the reader is referred to the original description of the model [9].
(DOCX)

S2 Table. Placebo group averages for the perceptual and response model parameters. All
results are mean ± SEM, corrected for the covariates Δalertness and body weight. β0 reflects
a constant component of log(RT). β1–4 reflect the influence of sensory PE (δ1), precision-
weighted contingency PE (ε3), phasic volatility estimates (μ3), and post-error trials on log(RT).
All β values were significantly greater than zero (all p< 0.05), indicating that these parameters
slowed log(RT). http://dx.doi.org/10.6084/m9.figshare.3796407.v1.
(DOCX)

S3 Table. Results of familywise Bayesian model comparison. To further verify that Response
Model 1 offered the best means by which to explain trialwise log(RT), we compared a more
exhaustive set of linear response models containing different combinations of parameters from
the HGF on the Placebo group. We first ran a familywise model comparison on models con-
taining every combination of the parameters δ1, ε2, ε3, and μ3 (Family 1) versus models con-
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