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We offer a formal treatment of choice behavior based on the premise that agents minimize the expected free energy of
future outcomes. Crucially, the negative free energy orquality of a policy can be decomposed into extrinsic and epistemic
(or intrinsic) value. Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected
utility (defined in terms of prior preferences or goals), while maximizing information gain or intrinsic value (or reducing
uncertainty about the causes of valuable outcomes). The resulting scheme resolves the exploration-exploitation dilemma:
Epistemic value is maximized until there is no further information gain, after which exploitation is assured through
maximization of extrinsic value. This is formally consistent with the Infomax principle, generalizing formulations of
active vision based upon salience (Bayesian surprise) and optimal decisions based on expected utility and risk-sensitive
(Kullback-Leibler) control. Furthermore, as with previous active inference formulations of discrete (Markovian)
problems, ad hoc softmax parameters become the expected (Bayes-optimal) precision of beliefs about, or confidence
in, policies. This article focuses on the basic theory, illustrating the ideas with simulations. A key aspect of these
simulations is the similarity between precision updates and dopaminergic discharges observed in conditioning paradigms.
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This article introduces a variational (free energy)
formulation of explorative behavior and the
(epistemic) value of knowing one’s environment. This
formulation tries to unite a number of perspectives on
behavioral imperatives; namely, the exploration-
exploitation dilemma and the distinction between the

explicit (extrinsic) value of controlled outcomes
and their epistemic (intrinsic) value in reducing
uncertainty about environmental contingencies
(Bialek, Nemenman, & Tishby, 2001; Botvinick &
An, 2008; Braun, Ortega, Theodorou, & Schaal, 2011;
Bromberg-Martin & Hikosaka 2009; Cohen, McClure,
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& Yu, 2007; Daw, Niv, & Dayan, 2005; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Friston
et al., 2014; Pezzulo & Castelfranchi, 2009;
Schmidhuber, 1991; Solway & Botvinick, 2012; Still,
2009; Tishby & Polani, 2010). In particular, it addresses
how resolving uncertainty “makes the world interesting
and exploitable” (Still & Precup, 2012, p. 139). It is the
resolution of uncertainty that we associate with the
intrinsic value of behavior, which we assume is
synonymous with epistemic value. Our basic approach
is to cast optimal behavior in terms of inference, where
actions are selected from posterior beliefs about
behavior. This allows one to frame goals and
preferences in terms of prior beliefs, such that goals
are subsequently fulfilled by action (Botvinick &
Toussaint, 2012; Kappen, Gomez, & Opper, 2012;
Toussaint & Storkey, 2006). This furnishes an
explanation of behavior in terms of one
straightforward imperative—to minimize surprise or,
equivalently, to maximize Bayesian model evidence.

The resulting active inference scheme unifies
conventional treatments of normative behavior under
uncertainty. Classical treatments generally consider
belief updates and action selection separately, calling
on Bayesian inference to optimize beliefs and other
schemes (such as dynamic programming) to select
actions (Bonet & Geffner, 2014; Hauskrecht, 2000;
Kaelbling, Littman, & Cassandra, 1998). Treating
action selection as (active) inference means that both
state estimation and the ensuing behavior can be
described as a minimization of variational free energy
or surprise.1 In this setting, action reduces the difference
between the current and (unsurprising) goal states that
are defined by prior expectations, much like cybernetic
formulations (Miller, Galanter, & Pribram, 1960). This
difference can be reduced in two ways. First, by
executing a pragmatic action, that fulfills goals
directly (i.e., exploitation); for example, by visiting a
known reward site in the context of foraging. Second, by
performing an epistemic action (i.e., exploration) to
disclose information that enables pragmatic action in
the long run; for example, exploring a maze to
discover unknown reward sites (Kirsh & Maglio,
1994). Clearly, most behavior has both pragmatic and
epistemic aspects. Epistemic actions are the focus of
much current research (Andreopoulos & Tsotsos,
2013; Ferro, Ognibene, Pezzulo, & Pirrelli, 2010;

Kamar & Horvitz, 2013; Lepora, Martinez-Hernandez,
& Prescott, 2013; Lungarella & Sporns, 2006;
Ognibene, Chinellato, Sarabia, & Demiris, 2013;
Ognibene, Volpi, Pezzulo, & Baldassare, 2013;
Pezzementi, Plaku, Reyda, & Hager, 2011; Schneider
et al., 2009; Singh, Krause, Guestrin, & Kaiser, 2009).
For example, the coastal navigation algorithm (Roy,
Burgard, Fox, & Thrun, 1999) shows that epistemic
actions can sometimes increase the distance from a
goal. In this example, agents move toward a familiar
location (and away from the goal) to plan a path to the
goal with greater confidence. This example illustrates
the exploration-exploitation dilemma encountered at
every decision point—and the implicit choice between
epistemic and pragmatic actions. This choice is usually
addressed in the setting of reinforcement learning
(Dayan, 2009; Humphries, Khamassi, & Gurney,
2012; Still & Precup, 2012) but here we place more
emphasis on planning or inference (Attias, 2003;
Botvinick & Toussaint, 2012). In short, we offer a
solution to exploration-exploitation dilemma that rests
solely on the minimization of expected free energy.

In active inference, constructs like reward, utility,
epistemic value, etc. are described in terms of prior
beliefs or preferences. In other words, preferred
outcomes are simply outcomes one expects, a priori, to
be realized through behavior (e.g., arriving at one’s
destination or maintaining physiological states within
some homoeostatic range). This formulation of utility
has a number of advantages. First, it eliminates any ad
hoc parameters in classical schemes (such as softmax
parameters, temporal discounting, etc.). Second, it
reveals the formal relationships among classical
constructs, enabling their interpretation in terms of
beliefs or expectations. For example, we have
previously shown that the softmax parameter in
classical (utilitarian) choice models corresponds to the
precision or confidence in posterior beliefs about
policies—and that this precision increases with
expected utility (Friston et al., 2014). Third, this
formulation is equipped with a relatively simple and
biologically plausible process theory based upon
variational message passing (Friston et al., 2013). This
can be potentially useful when looking for the neuronal
correlates of message passing in decision-making
paradigms. Finally, casting rewards and value as
probabilistic beliefs means that intrinsic and extrinsic
values share a common currency. This means one can
express (extrinsic) reward in terms of (epistemic)
information gain and quantify their relative
contributions to behavior.

Formally speaking, we resolve the exploration-
exploitation dilemma by endowing agents with prior
beliefs that they will minimize the expected free energy

1Variational free energy was introduced by Richard Feynman to
solve inference problems in quantum mechanics and can be
regarded as a generalization of thermodynamic free energy. In this
paper, free energy refers to variational free energy. We will see later
that minimizing free energy (or maximizing negative free energy)
corresponds to maximizing expected value.
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of future outcomes. In other words, the agent will be
surprised if it behaves in a way that is not Bayes
optimal. Because expected free energy determines
action selection, the resulting behavior is necessarily
Bayes optimal. Crucially, expected free energy is
minimized over an extended timescale, making
exploration a necessary and emergent aspect of
optimal behavior. Expected free energy can be
expressed as the Kullback-Leibler (KL) divergence
between the posterior (predictive) and prior
(preferred) distributions over future outcomes, plus
the expected entropy of those observations, given
their causes. In brief, minimizing this divergence
ensures preferred outcomes are actively sampled from
the environment, while minimizing the expected
entropy resolves uncertainty about the (hidden) states
causing those outcomes.2 Intuitively, these two aspects
of emergent behavior (sampling preferred outcomes
and minimizing expected uncertainty) correspond to
exploitation and exploration, respectively.
Interestingly, the negative expected free energy can
also be expressed as the expected divergence between
the posterior (predictive) distribution over hidden
states with and without future observations, plus the
expected utility (defined as the log of the prior
probability of future states). We will associate these
terms with epistemic and extrinsic value respectively.

We have shown previously that minimizing the
divergence between the posterior predictive
distribution and prior preferences produces behavior
that is risk-sensitive or KL optimal (Friston et al.,
2013). Here, we show that this risk-sensitive control is
a special case of minimizing expected free energy,
which effectively supplements expected utility with a
KL divergence that reflects epistemic value, mutual
information, information gain, or Bayesian surprise,
depending upon one’s point of view. The KL
divergence is also known as relative entropy or
information gain. This means that minimizing
expected free energy maximizes information gain
(Ognibene & Demiris, 2013; Sornkarn, Nanayakkara,
& Howard, 2014; Tishby & Polani, 2010) or,
heuristically, satisfies curiosity by reducing uncertainty
about the world (Schmidhuber, 1991). An alternative
perspective on this epistemic quantity is afforded by
Bayesian surprise; namely, the KL divergence
between prior and posterior beliefs (Bruce & Tsotsos,
2009; Itti & Baldi, 2009). However, in this case, the

Bayesian surprise pertains to future states that have yet
to be observed.

For readers who are familiar with our previous work
on active inference, this paper introduces a generic
formulation that combines earlier work on optimal
choice behavior (Friston et al., 2014) with
formulations of salience based on sampling the world
to resolve uncertainty (Friston, Adams, Perrinet, &
Breakspear, 2012). These two formulations can be
regarded as special cases of minimizing expected free
energy, when sensory cues are unambiguous and when
outcomes have only epistemic value, respectively. In
this article, we show that minimizing expected free
energy provides an inclusive perspective on several
other established formulations of behavior.

In what follows, we introduce the basic formalism
behind active inference, with a special focus on
epistemic value and how this emerges under active
(Bayesian) inference. The second section considers
(biologically plausible) variational message passing
schemes that can be used to simulate active
inference in the context of partially observed
Markov decision processes (Kaelbling et al., 1998)
or to model empirical choice behavior. The final
sections present simulations of exploration and
exploitation, using a simple foraging game to
illustrate the fundamental role of epistemic value in
actively resolving uncertainty about goal-directed
behavior. These sections consider planning and
learning as inference, respectively. In future work,
we will consider the optimization of models per se
in terms of Bayesian model selection (structure
learning) and the role of Bayesian model averaging
in contextualizing shallow (model-free) and deep
(model-based) models.

ACTIVE INFERENCE

This section describes active inference, in which
inference and behavior are seen as consequences
of minimizing variational free energy or,
equivalently, maximizing Bayesian model evidence
(Friston, 2010). We have previously considered
epistemic value and salience using continuous
time predictive coding schemes and saccadic
searches (Friston et al., 2012). Here, we will use a
discrete time and state space formulation of Bayes
optimal behavior to show that information gain is a
necessary consequence of minimizing expected free
energy.

This formulation rests upon two key distinctions.
First, we distinguish between a real world process that
generates observations and an agent’s internal model

2Note the dialectic between minimizing the entropy expected in
the future and maximizing the entropy of current beliefs—implicit
in minimizing free energy Friston et al. (2012). “Perceptions as
hypotheses: Saccades as experiments.” Front Psychol. 3: 151.
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of that process. These are referred to as the generative
process and generative model respectively. The
process and model are coupled in two directions:
(sensory) observations generated by the generative
process are observed by the agent, while the agent
acts on the world to change that process. We will see
that action serves to minimize the same quantity
(variational free energy) used to make inferences
about the hidden causes of observations. Crucially,
action is a real variable that acts on the generative
process, while the corresponding hidden cause in the
generative model is a control state. This means the
agent has to infer its behavior by forming beliefs
about control states, based upon the observed
consequences of its action.

We will adopt the formalism of partially observed
Markov decision processes (POMDP). This is just a
way of describing transitions among (discrete) states,
under the assumption that the probability of the next
state depends on, and only on, the current state. The
partially observed aspect of the ensuing Markovian
process means that the states of the generative process
are hidden and have to be inferred through a limited
set of (possibly noisy) observations.3

Notation: We use conventional notation, where the
parameters of categorical distributions over discrete
states s 2 S 2 f1; . . . ; Jg are denoted by J ! 1

vectors of expectations S
_

2 ½0; 1#, while the ~ notation
denotes sequences of variables over time. The entropy
of a probability distribution PðaÞ ¼ PrðA ¼ aÞ will be
denoted by HðAÞ ¼ H ½PðaÞ# ¼ EPðaÞ½' lnPðaÞ# and
the relative entropy by the Kullback-Leibler (KL)
divergence D½QðaÞjjPðaÞ# ¼ EQðaÞ½lnQðaÞ ' lnPðaÞ#.
The dot notation means A ( B ¼ ATB and A! B
denotes the Hadamard (or element by element)
product of two matrices. Similarly, lnA denotes the
logarithm of the elements of a matrix.

Definition: Active inference rests on the tuple
ðP;Q;R; S;A;U ;ΩÞ:

● A finite set of observations Ω
● A finite set of actions A
● A finite set of hidden states S
● A finite set of control states U

● A generative process over observations ~o 2 Ω,
hidden states ~s 2 S, and action ~a 2 A

Rð~o;~s; ~aÞ ¼ Prðfo0; . . . ; otg ¼ ~o; fs0; . . . ; stg
¼ ~s; fa0; . . . ; at'1g ¼ ~aÞ

● A generative model over observations ~o 2 Ω,
hidden ~s 2 S, and control ~u 2 U states
Pð~o;~s; ~ujmÞ ¼ Prðfo0; . . . ; oTg ¼ ~o; fs0;
. . . ; sTg ¼ ~s; fut; . . . ; uTg ¼ ~uÞ, with parameters
θ

● An approximate posterior over hidden and con-
trol states such that Qð~s; ~uÞ ¼ Prðfs0; . . . ; sTg ¼
~s; fut; . . . ; uTg ¼ ~uÞ with parameters or expecta-
tions ðs_; π_Þ, where π 2 f1; . . . ;Kg is a policy
that indexes a sequence of control states
ð~ujπÞ ¼ ðut; . . . ; uT jπÞ

Remark: The generative process describes the
environment in terms of transitions among hidden
states that generate observed outcomes. These
transitions depend upon actions, which are sampled
from approximate posterior beliefs about control
states. In turn, these beliefs are formed using
a generative model (denoted by m) of how
observations are generated. The generative model
describes what the agent believes about the world,
where (approximate posterior) beliefs about hidden
states and control states are encoded by
expectations. This is a slightly unusual setup
because there is a distinction between actions (that
are part of a generative process) and control states
(that are part of the generative model). This
distinction allows actions to be sampled from
posterior beliefs about control, effectively converting
an optimal control problem into an optimal inference
problem (Attias, 2003; Botvinick & Toussaint, 2012).
Furthermore, note that (unlike the generative process)
the generative model includes beliefs about future
states.

So far, we have just described the agent’s world
and its model of that world. To describe the agent’s
exchange with its environment, we have to specify
how its expectations depend upon observations
and how its action depends upon expectations. In
other words, we have to close the perception-action
cycle (Fuster, 2004). In brief, we will make
one sassumption; namely, that both actions and
expectations minimize the free energy of
observations. More precisely, we will assume that
expectations minimize free energy and the
expectations of control states prescribe action at
the current time t:

3For readers interested in technical details, the simulations (and
figures) reported in this paper can be reproduced by downloading
the academic freeware SPM. Annotated Matlab scripts can then be
accessed through a graphical user interface (invoked by typing
DEM and selecting “epistemic value”). Please visit http://www.fil.
ion.ucl.ac.uk/spm/software/
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ðs_)
; π_

)Þ ¼ argminFð~o; s_; π_Þ

Prðat ¼ utÞ ¼ Qðutjπ
_)Þ

Fð~o; s_; π_Þ ¼ EQ½' lnPð~o;~s; ~ujmÞ# ' H ½Qð~s; ~uÞ#
¼ ' lnPð~ojmÞ þ D½Qð~s; ~uÞjjPð~s; ~uj~oÞ#

(1)

Heuristically, at each decision point or cycle the agent
first figures out which states are most likely by
optimizing its expectations with respect to free
energy (using the generative model). After
optimizing its posterior beliefs, an action is sampled
from the posterior probability distribution over
control states. Given this action, the environment
generates a new observation (using the generative
process) and a new cycle begins.

The first expression for free energy in Equation 1
shows that it is an expected energy, under the
generative model, minus the entropy of the
approximate posterior. This expression can be
rearranged to give the second expression, which shows
that free energy is an upper bound on the negative
logarithm of Bayesian model evidence ' lnPð~ojmÞ,
which is also known as surprise or surprisal. The free
energy is an upper bound on surprise because the
divergence term cannot be less than zero (Beal, 2003).
Therefore, minimizing free energy corresponds to
minimizing the divergence between the approximate
and true posterior. This formalizes the notion of
approximate Bayesian inference in psychology and
machine learning (Dayan & Hinton, 1997; Dayan,
Hinton, & Neal, 1995; Helmholtz, 1866/1962).
Minimizing surprise provides a nice perspective on
perception which, in this setting, corresponds to
updating expectations about hidden states of the world
in a Bayes optimal fashion. But what about action? If
action is sampled from beliefs about control states, then
the agent must believe its actions will minimize free
energy. We now look at this more closely.

In active inference, agents do not just infer hidden
states but actively sample outcomes that minimize
free energy. The aim here is to explain how agents
restrict themselves to a small number of preferred
outcomes (i.e., goals). This is fairly straightforward
to explain if agents minimize surprise, while a priori
expecting to attain their goals. More formally, if
actions depend upon posterior beliefs, then actions
depend on prior beliefs. This means prior beliefs
entail goals because they specify action. In turn, the
generative model entails prior beliefs because it
comprises the likelihood over observations, an
empirical prior over state transitions and a prior over

control states. These correspond to the three marginal
distributions of the generative model:
Pð~o;~s; ~ujmÞ ¼ Pð~oj~sÞPð~sj~uÞPð~ujmÞ. Crucially, the
only self-consistent prior beliefs an agent can
entertain about control states is that they will
minimize free energy.4 One can express this
formally by associating the prior probability of a
policy with the path integral (from the current to the
final state) of free energy expected under that policy
(c.f., Hamilton’s principle of least action and
Feynman’s path integral formulation of quantum
mechanics). We will call this the quality, value, or
the expected (negative) free energy of a policy,
denoted by Qð~ujπÞ :¼ QðπÞ:

lnP ~ujγð Þ ¼ γ (QðπÞ ¼ γ ( ðQtþ1ðπÞ þ . . .þQT ðπÞÞ
QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτ ; sτ jπÞ# þ H ½QðsτjπÞ#

(2)

This expression says that a policy is a priori more likely if
the policy has a high quality or its expected free energy is
small. Heuristically, this means that agents believe they
will pursue policies that minimize the expected free
energy of outcomes and implicitly minimize their
surprise about those outcomes. Equivalently, policies
that do not minimize expected free energy are a priori
surprising and will be avoided. Put simply, not only do
agents minimize free energy or surprise (Equation 1) but
they also believe they will minimize free energy or
surprise (Equation 2). These beliefs (Equation 2) are
realized through active inference because agents
minimize surprise (Equation 1). This self-consistent
recursion leads to behavior that is apparently purposeful,
in the sense that it appears to avoid surprising states.

The expected free energy is the free energy of
beliefs about the future (not the free energy of future
beliefs). More formally, the expected free energy is
the energy of counterfactual outcomes and their
causes expected under their posterior predictive
distribution, minus the entropy of the posterior

4This is a fairly subtle assertion that lies at the heart of active
inference. Put simply, agents will adjust their expectations to
minimize the free energy associated with any given observations.
However, when the agent actively samples observations, it has the
opportunity to choose observations that minimize free energy—an
opportunity that is only realized when the agent believes this is how
it behaves. A more formal proof by reductio ad absurdum—that
appeals to random dynamical systems—can be found in Friston and
Mathys (2015). I think therefore I am. Cognitive Dynamic Systems.
S. Haykin, IEEE press: in press. In brief, to exist, an ergodic system
must place an upper bound on the entropy of its states, where
entropy is the long-term average of surprise. Therefore, any
system that does not (believe it will) minimize the long-term
average of surprise does not (believe it will) exist.
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predictive distribution over hidden states. The
posterior predictive distributions are distributions
over future states at τ > t expected under current
beliefs: Q oτ; sτ jπð Þ ¼ EQðstÞ½Pðoτ ; sτjst; πÞ#. Notice
that this predictive posterior includes beliefs about
future outcomes and hidden states, while the current
posterior QðstÞ just covers hidden states. In this setup,
γ 2 θ plays the role of a sensitivity or inverse
temperature parameter that corresponds to the
precision of, or confidence in, prior beliefs about
policies.

Note that we have introduced a circular causality by
specifying prior beliefs in this way: Prior beliefs about
control states depend upon (approximate posterior
predictive) beliefs about hidden states, which depend
on observations. This means that prior beliefs about
policies depend upon past observations. Indeed, we
will see later that if the precision parameter γ was
known, the prior and posterior beliefs would be
identical. However, when the precision is a free
(hyper) parameter, posterior beliefs become the prior
beliefs expected under posterior precision. This may
sound rather complicated but the important role of
posterior precision or confidence will become
increasingly evident. In brief, by making precision a
free parameter, it can be optimized with respect to free
energy or model evidence (unlike the inverse
temperature parameter of conventional models). We
now try to unpack these beliefs about policies in terms
of established formulations of goal-directed behavior.

Although Equation 2 has a relatively simple form,
it is not easy to see the behaviors it produces.
However, with some straightforward rearrangement,
two intuitive terms reveal themselves; namely,
extrinsic and epistemic value (see also Appendix A).

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτ; sτjπÞ ' lnQðsτ jπÞ#
¼ EQðoτ ;sτ jπÞ½lnQðsτ joτ ; πÞ þ lnPðoτ jmÞ

' lnQðsτjπÞ# ¼ EQðoτ jπÞ½lnPðoτ jmÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Extrinsic value

þ EQðoτ jπÞ½D½Qðsτjoτ; πÞjjQðsτ jπÞ##|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Epistemic value

(3)

Here, the generativemodel of future statesPðoτ ; sτ jπÞ ¼
Qðsτjoτ; πÞPðoτ jmÞ comprises the predictive posterior
and prior beliefs about future outcomes. Note,
the generative model of future states is not the
generative model of states in the future, when the
predictive posterior becomes the future posterior and
the generative model of the future becomes the future
generative model Pðoτ; sτ jπÞ ¼ Pðsτ joτ; πÞPðoτjmÞ.
Equation 3 shows that under the generative model of

the future, the quality of a policy can be expressed in
terms of extrinsic and epistemic value:

Extrinsic value: Extrinsic value is the utility
Cðoτ jmÞ ¼ lnPðoτjmÞ of an outcome expected under
the posterior predictive distribution. It is this utility
that encodes the preferred outcomes that lend
behavior its goal-directed nature. In other words,
agents consider outcomes with low utility surprising,
irrespective of the policy. This means that agents
(believe they) will maximize expected utility to
ensure preferred outcomes. Note that, by definition,
the utility of an outcome is not a function of the
policy. This means the agent believes all
(unsurprising) policies lead to the same preferred
outcomes or goals. The degree to which expected
utility dominates prior beliefs about policies rests on
the precision of prior preferences. In the absence of
precise goals, epistemic or intrinsic value will come to
dominate policy selection.

Epistemic value: Epistemic value is the expected
information gain under predicted outcomes. In other
words, it reports the reduction in uncertainty about
hidden states afforded by observations. Because the
KL divergence (or information gain) cannot be less
than zero, the information gain is smallest when the
posterior predictive distribution is not informed by
new observations. Heuristically, this means valuable
policies will search out observations, cues or
“signs” that resolve uncertainty about the state of
the world (e.g., foraging to resolve uncertainty
about the hidden location of food or fixating on
informative part of a face to identify someone).
However, when there is no posterior uncertainty,
and the agent is confident about the state of the
world, there can be no further information gain and
epistemic value will be the same for all policies. In
this case, extrinsic value will dominate policy
selection.

Relationship to established formalisms

The Infomax principle: Epistemic or intrinsic value
fits comfortably with a number of formulations from
the visual sciences and information theory. As
discussed (using continuous time formulations) in
Friston et al. (2012), minimizing uncertainty about
hidden states necessarily entails an increase in the
mutual information between (sensory) outcomes and
their (hidden) causes. Formally, this can be seen with
a simple rearrangement of epistemic value to show
that it is equivalent to the mutual information between
hidden states and outcomes, under the posterior
predictive distribution:
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EQðoτ jπÞ½D½Qðsτjoτ ; πÞjjQðsτ jπÞ##|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Epistemic value

¼ D½Qðsτ ; oτjπÞjjQðsτjπÞQðoτ jπÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predictive mutual information

(4)

This means that policies with epistemic value render
observations more informative about their causes.
This is one instance of the Infomax principle
(Linsker, 1990), which is closely related to the
principle of maximum mutual information, or
minimum redundancy (Barlow, 1961, 1974; Bialek
et al., 2001; Najemnik & Geisler, 2005; Oja, 1989;
Olshausen & Field, 1996; Optican & Richmond,
1987).

Bayesian surprise: Epistemic value is also the
Bayesian surprise expected under counterfactual
outcomes. Bayesian surprise is a measure of salience
and is the KL divergence between a posterior and
prior distribution (Itti & Baldi, 2009). Empirically,
people tend to direct their gaze toward salient visual
features with high Bayesian surprise (Itti & Baldi,
2009). In the current setup, the expected Bayesian
surprise, or salience, is the epistemic value of a
particular policy that samples (sensory) outcomes.
Although the value of a policy includes Bayesian
surprise, it also comprises expected utility, which
contextualizes the influence of salience. In other
words, salience will only drive epistemic sampling
of salient information if the epistemic value of that
sampling is greater than the extrinsic value of an
alternative behavior. We will see examples of this
later.

Value of information: The value information is the
amount an agent would pay to obtain information
pertaining to a decision (Howard, 1966; Krause &
Guestrin, 2005; Kamar & Horvitz, 2013). In this
formulation, information has no epistemic value per
se but only relative to choices or policy selection; in
other words, information that does not affect a choice
has no value. The value of information is generally
intractable to compute for complex (e.g.,
nonstationary) environments. Here, we offer a
formulation that contextualizes the value of
information (epistemic value) in relation to extrinsic
value and provides a tractable (approximate Bayesian
inference) scheme for its evaluation.

KL control: Optimal control problems can
generally be expressed as minimizing the KL
divergence between the preferred and predictive
distribution over outcomes. The general idea behind
KL control is to select control states that minimize the
difference between predicted and desired outcomes,
where the difference is measured in terms of the KL

divergence between the respective probability
distributions. Minimizing this divergence is a
cornerstone of risk-sensitive control (Van Den
Broek, Wiegerinck, & Kappen, 2010) and utility-
based free energy treatments of bounded rationality
(Ortega & Braun, 2011, 2013). In the current context,
risk-sensitive (KL) control can be seen as a special
case of minimizing expected free energy, when
outcomes unambiguously specify hidden states. In
other words, when the generative process is
completely observable, we can associate each
outcome with a hidden state such that oτ ¼ sτ and:

QτðπÞ ¼ EQðsτ jπÞ½lnPðsτjπÞ ' lnQðsτjπÞ#
¼ 'D½QðsτjπÞjjPðsτjπÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KL divergence

¼ EQðsτ jπÞ½lnPðsτ jmÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Extrinsic value

þ H ½Qðsτ jπÞ#|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Epistemic value

ð5Þ

In this special case, minimizing free energy
minimizes the divergence between the posterior
predictive distribution over states and the prior
predictive distribution encoding goals. Here, the
extrinsic value now becomes an expected utility
over states and the epistemic value becomes the
novelty or (posterior predictive) entropy over future
states. The difference between maximizing the
entropy (novelty) and relative entropy (information
gain) distinguishes risk-sensitive (KL) control from
free energy minimization. Only minimizing free
energy allows epistemic value to guide explorative
behavior in a way that fully accommodates
uncertainty about a partially observed world. This
can be seen clearly with a final rearrangement of the
expression for the quality of a policy (see Appendix
A):

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnQðoτjsτ; πÞ
þ lnPðoτ jmÞ ' lnQðoτ jπÞ#

¼ 'EQðsτ jπÞ½H ½Pðoτ jsτÞ##|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted uncertainty

'D½Qðoτ jπÞjjPðoτjmÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted divergence

ð6Þ

This equality expresses the value of a policy in terms
of the posterior predictive distribution over outcomes,
as opposed to hidden states. In this formulation,
expected free energy corresponds to the expected
entropy or uncertainty over outcomes, given their
causes, plus the KL divergence between the
posterior predictive and preferred distributions. In
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other words, minimizing expected free energy
minimizes the divergence between predicted and
preferred outcomes (i.e., predicted divergence) and
any uncertainty afforded by observations (i.e.,
predicted uncertainty). Heuristically, this ensures
observations are informative. For example, an agent
who wants to avoid bright light will move to the
shade, as opposed to closing its eyes. If outcomes
are always informative, we revert to risk-sensitive
(KL) control, expressed in terms of preferences over
outcomes, as opposed to states.

In our previous formulations of active inference
and risk-sensitive (KL) control, we only considered
scenarios in which hidden states could be observed
directly. In this paper, we will illustrate the difference
between risk-sensitive (KL) control and expected free
energy minimization in a more realistic setting, in
which hidden states can only be inferred from
particular observations. In this context, we will see
that risk-sensitive (KL) control is not sufficient to
explain purposeful or exploratory responses to
salient cues that resolve uncertainty about the
environment.

Dopamine and reward prediction errors: In the
next section, we will see how approximate Bayesian
inference, implicit in active inference, can be
implemented using a relatively simple variational
message passing scheme. We have previously
discussed the biological plausibility of this scheme in
terms of recursive neuronal message passing (Friston
et al., 2013) and have associated dopamine with the
posterior precision of beliefs about control states
(Friston et al., 2014). We will see later that changes
in the expected (inverse) precision are identical to
changes in (negative) expected value. This is
potentially important because it may explain why
changes in dopamine firing have been associated with
reward prediction error (Schultz, 1998). However, it
has a deeper implication here: If expected precision
changes with expected value, then the current
formulation explains why dopamine has a multilateral
sensitivity to novelty (Kakade & Dayan, 2002; Krebs,
Schott, Schütze, & Düzel, 2009; Wittmann, Daw,
Seymour, & Dolan, 2008), salience (Berridge, 2007),
expected reward (Bunzeck & Düzel, 2006; D’Ardenne,
McClure, Nystrom, & Cohen, 2008; Daw & Doya,
2006; Dayan, 2009; McClure, Daw, & Montague,
2003; O’Doherty et al., 2004; Pessiglione, Seymour,
Flandin, Dolan, & Frith, 2006), epistemic value
(Fiorillo, Tobler, & Schultz, 2003; Redgrave &
Gurney, 2006; Bromberg-Martin & Hikosaka, 2009),
and affordance (Cisek, 2007; Gurney, Prescott, &
Redgrave, 2001; see also Nepora & Gurney, 2012).
The study of Bromberg-Martin and Hikosaka (2009) is

particularly interesting in this context because it
provides direct evidence linking dopamine responses
and epistemic value. The emerging perspective also fits
comfortably with recent attempts to reconcile
dopamine’s role in the exploration-exploitation trade-
off with the role of the basal ganglia in action
selection, “by testing the hypothesis that tonic
dopamine in the striatum, the basal ganglia’s input
nucleus, sets the current exploration-exploitation
trade-off” (Humphries et al., 2012, p. 1).

The close relationship between expected precision
and value provides an interesting perspective on the
transfer of dopaminergic responses to conditioned
stimuli in operant conditioning paradigms (Schultz,
1998). From the perspective of active inference,
conditioned stimuli have epistemic value because
they resolve uncertainty about future outcomes
(unconditioned stimuli). This perspective may also
provide an inferential account of blocking and latent
inhibition, in the sense that if epistemic uncertainty
has already been resolved by one conditioned
stimulus, then no further information gain is
afforded by another. We will pursue these arguments
with simulations of goal-directed behavior below. The
important issue here is a dual role for dopaminergic
responses in reporting precision in terms of extrinsic
and epistemic value. However, functionally, there is
only one precision (sensitivity) parameter that applies
to, and reconciles, both aspects of value. This
eliminates the need for ad hoc parameters to finesse
the exploration-exploitation dilemma. We will
illustrate these and other points using simulations in
the last two sections.

Summary

Although minimizing expected free energy corresponds
to maximizing extrinsic and epistemic value, this dual
maximization is a particular perspective on the
underlying imperative to minimize surprise. This
means that both extrinsic and epistemic value work
synergistically to increase the likelihood of preferred
outcomes with the minimum of uncertainty. For
example, extrinsic value depends on the posterior
predictive distribution over outcomes, which is only
informative when the agent can be confident about the
current state (c.f., the coastal navigation example
above). This means epistemic uncertainty must first be
resolved (by increasing epistemic value) before
expected utility comes into play. At the same time, an
agent should not indulge in epistemic actions, if it is
sufficiently confident it can pursue a successful plan.
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These considerations are especially interesting in
relation to exploration and exploitation.

In summary, minimizing free energy corresponds to
approximate Bayesian inference and, in active inference,
choosing the least surprising outcomes. If agents model
their environments, they have to entertain posterior beliefs
about the control of state transitions producing outcomes.
This means we have to consider posterior beliefs about
control states, which rest on prior beliefs about controlled
outcomes. Using the self-consistent prior that control states
minimize expected free energy (“I expect to avoid
surprises”), we arrive at a process theory that offers a
formal definition of extrinsic and epistemic value.
Furthermore, it emphasizes the fact that purposeful
behavior rests upon generative models that entertain
future outcomes. This formulation accommodates a
number of established perspectives; namely, the Infomax
principle, the notion of Bayesian surprise in reporting the
salience of cues, and KL control, which generalizes risk-
sensitive control and expected utility theory. In the next
section we will see how this theory prescribes a
computational anatomy for Bayesian belief updating that
has many similarities with message passing in the brain.

GENERATIVE MODELS AND
VARIATIONAL MESSAGE PASSING

The generative model

The generative model used to model the (finite horizon
Markovian) processes considered below can be
expressed in terms of the following likelihood and
prior distributions over observations and states up to
time t 2 ð0; . . . ; TÞ (omitting normalization constants):

P ~o;~s;~u; γj~a;mð Þ ¼ P ~oj~sð ÞP ~sj~að ÞP ~ujγð ÞP γjmð Þ
P ~oj~sð Þ ¼ Pðo0js0ÞPðo1js1Þ . . .PðotjstÞ
P ~sj~að Þ ¼ Pðstjst'1;atÞ . . .Pðs1js0;a1ÞPðs0jmÞ
P ~ujγð Þ ¼ σðγ (QÞ

(7)

Here, σð(Þ is a softmax function. The first equality
expresses the generative model in terms of the
likelihood of observations given the hidden states
(first term) and subsequent empirical prior beliefs.
Empirical priors are probability distributions over
unknown variables that depend on other unknown
variables. Empirical priors are a universal aspect of
hierarchical Bayesian models; for example,
parametric empirical Bayes (Kass & Steffey, 1989).

In effect, empirical priors are informed by
observations under hierarchical constraints. The
likelihood in the second equality implies that
observations depend on, and only on, the current
hidden state. The third equality expresses (empirical)
prior beliefs about state transitions. For simplicity, we
assume that agents know their past actions. The final
equality expresses beliefs about policies in terms of
their quality or value. In short, this model represents
past hidden states and future choices, under the belief
that controlled transitions from the current state will
minimize the expected free energy of future states.

This model can be parameterized in a fairly
straightforward way, using the notation Pðot ¼ ijst ¼
j;AÞ ¼ Aij ( PðotjstÞ ¼ A

P otjstð Þ ¼ A

P stþ1jst; utð Þ ¼ BðutÞ
P oτjmð Þ ¼ Cτ

P s0jmð Þ ¼ D

P γjmð Þ ¼ Γðα; βÞ
ð8Þ

These equalities mean that the categorical
distributions over observations, given the hidden
states, are encoded by the matrix A 2 θ that maps
from hidden states to outcomes. Similarly, the
transition matrices BðutÞ 2 θ encode transition
probabilities from one state to the next, under the
current control state. The vectors C 2 θ and D 2 θ
encode prior distributions over future outcomes and
initial states, respectively. The priors over future
outcomes specify their utility Cðoτ jmÞ ¼
ln PðoτjmÞ ¼ lnCτ . Finally, the prior over precision
has a standard gamma distribution, with shape and
rate parameters (in this paper) α ¼ 64 and β ¼ 4.

The vectorQ contains the values of each policy at the
current time. These values can be expressed in terms of
the parameters above using the expression for expected
free energy in Equation (6) and Appendix A:

QðπÞ ¼ Qtþ1ðπÞ þ . . .þQT ðπÞ
QτðπÞ ¼ 1 ( ðA! lnAÞs_τðπÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

'ðln o_τðπÞ ' lnCτÞ ( o
_

τðπÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted divergence

s_τðπÞ ¼ BðuτjπÞ . . .BðutjπÞs
_

t

o_τðπÞ ¼ As_τðπÞ
ð9Þ
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Where s_τðπÞ are the expected states at time τ under
policy π and 1 is a column vector of ones. Note that
when there is no uncertainty about future states, we
have 1 ( ðA! lnAÞs_τðπÞ ¼ lnðAs_τðπÞÞ ( As_τðπÞ and
the value of a policy depends only on expected
utility QτðπÞ ¼ o_τðπÞ ( lnCτ. In other words, policies
have no epistemic value when they lead to no further
information gain.

Approximate Bayesian inference

Having specified the generative model, variational
Bayes now offers a generic scheme for approximate
Bayesian inference that finesses the combinatoric and
analytic intractability of exact inference (Beal, 2003;
Fox & Roberts, 2011). Variational Bayes rests on a
factorization of approximate posterior beliefs that
greatly reduces the number of expectations required
to encode it. The factorization we focus on exploits
the Markovian nature of the generative model and has
the following form (see Friston et al., 2013 for
details):

Q ~s; ~u; γjμð Þ ¼ Qðs0js
_

0Þ . . .QðsT js
_

T Þ
Qðut; . . . ; uT jπ

_ÞQðγjγ_Þ

Qðγjγ_Þ ¼ Γðα; β
_

¼ α=γ_Þ

(10)

This assumes a factorization over hidden states,
(future) control states, and precision. It is this
factorization that renders the inference approximate
and resolves many of the intractable problems of
exact inference. For example, the factorization does
not consider sequences of hidden states, which means
we only have to evaluate sequences of control states
(as opposed to all possible sequences of controlled
state transitions). We have assumed here that the
posterior marginal over precision is, like its
conjugate prior, a gamma distribution. The rate
parameter of this posterior belief β

_

¼ α
.
γ_

corresponds to temperature in classic formulations.
However, it is no longer a fixed parameter but a
sufficient statistic of beliefs about policies.

Given the generative model (Equation 7) and the
mean field assumption (Equation 10), it is
straightforward to solve for the expectations that
minimize variational free energy (see Appendix B).

s_t ¼ σðlnA ( ot þ lnðBðat'1Þs
_

t'1ÞÞ
π_ ¼ σðγ_ (QÞ

γ_ ¼ α

β 'Q ( π_

(11)

Iterating these self-consistent equations until convergence
produces the posterior expectations that minimize free
energy and provides Bayesian estimates of the
unknown variables. This means that expectations
change over two timescales: A fast timescale that
updates posterior beliefs between observations and a
slow timescale that updates posterior beliefs as new
observations are sampled. We have speculated (Friston,
Samothrakis, & Montague, 2012) that these updates may
be related to nested electrophysiological oscillations,
such as phase coupling between gamma and theta
oscillations in prefrontal–hippocampal interactions
(Canolty et al., 2006). See also (Penny, Zeidman, &
Burgess, 2013). The forms of these updates are
remarkably simple and we now consider each in turn.

The first equation updates expectations about hidden
states and corresponds to perceptual inference or state
estimation. This is essentially a Bayesian filter that
combines predictions based upon expectations about the
previous state with the likelihood of the current
observation. For simplicity, we have ignored the
dependency of value on expected states that would
introduce a third (optimism bias) term (see Appendix B).

The second update is just a softmax function of the
value of each policy, where the sensitivity parameter or
expected precision is an increasing function of expected
value. This last point is quite important: It means that the
sensitivity or inverse temperature, that determines the
precision with which a policy is selected, increases with
the expected value of those policies.

The third update optimizes expected precision. If we
express these updates in terms of the posterior rate
parameter, we see that changes in (inverse)
precision are changes in (negative) expected value:

β
_

¼ β 'Q ( π_. In other words, if an observation
increases the expected value of the policies entertained
by an agent, then expected precision increases (i.e.,
temperature decreases) and the agent is implicitly more
confident in selecting the next action. As noted above,
this may explain why dopamine discharges have been
interpreted in terms of changes in expected value (e.g.,
reward prediction errors). The role of the
neuromodulator dopamine in encoding precision is
further substantiated by noting that precision enters the
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variational updates in a multiplicative or modulatory
fashion. We will pursue this in the next section.

Summary

In summary, by assuming a generic (Markovian) form
for the generative model, it is fairly easy to derive
Bayesian updates that clarify the interrelationships
between expected value and precision—and how these
quantities shape beliefs about hidden states of the world
and subsequent behavior. Furthermore, the anatomy of
this message passing is not inconsistent with functional
anatomy in the brain (see Friston et al., 2014, and
Figure 1 in this paper). The implicit computational
anatomy rests on reciprocal message passing between
expected policies (e.g., in the striatum) and expected
precision (e.g., in the substantia nigra). Expectations
about policies depend upon value that, in turn,
depends upon expected states of the world that are
iterated forward in time—to evaluate free energy in the
future (e.g., in the prefrontal cortex; Mushiake, Saito,
Sakamoto, Itoyama, & Tanji, 2006) and possibly
hippocampus (Pezzulo, Van der Meer, Lansink, &
Pennartz, 2014). In the next section, we illustrate the
basic behavior of this scheme using simulations.

INFERENCE AND PLANNING

This section considers inference using simulations of
foraging for information in a relatively simple
environment. Its focus is on the comparative
performance when minimizing expected free energy,
relative to the special cases of risk-sensitive control
and maximizing expected utility or reward. In
particular, we will look at the neuronal correlates of
the scheme in terms of simulated dopaminergic
responses. The problem we consider can be
construed as searching for rewards in a T-maze. This
T-maze offers primary rewards (or, in Pavlovian
terms, unconditioned stimuli; US) such as food and
cues (or conditioned stimuli; CS) that are not
rewarding per se but disclose rewards that can be
secured subsequently. The basic principles of this
problem can be applied to any number of scenarios
(e.g., saccadic eye movements to visual targets). This
example was chosen to be as simple as possible,
while illustrating a number of key points that follow
from the theoretical considerations above.
Furthermore, this example can also be interpreted in
terms of responses elicited in reinforcement learning
paradigms by unconditioned (US) and conditioned
(CS) stimuli. We will call on this interpretation
when relating precision updates to dopaminergic
discharges.

Figure 1. This figure illustrates the cognitive and functional anatomy implied by the variational scheme in the main text. Here, we have
associated the variational updates of expected hidden states with perception, of control states (policies) with action selection and, finally,
expected precision with attention or salience. In terms of neuronal implementation, the requisite exchange of expectations can be likened to the
exchange of neuronal signals via extrinsic connections among functionally specialized brain systems. In this (purely iconic) schematic, we have
associated perception (inference about the current state of the world) with the prefrontal cortex (which plausibly interacts with the hippocampus
in this context), while assigning action selection to the basal ganglia. Precision has been associated with dopaminergic projections from ventral
tegmental area and substantia nigra. See main text for a full description of the equations.
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The setup

The agent (e.g., rat) starts in the center of a T-maze,
where either the right or left arms are baited with a
reward (US). The lower arm contains a cue (CS),
which tells the animal whether the reward is in the
upper right or left arm. Crucially, the agent can only
make two moves from any location to another (for
simplicity, we do not require the agent to visit
intermediate locations). Furthermore, the agent
cannot leave the baited arms after they are entered.
This means that the optimal behavior is to first go to
the lower arm to find where the reward is located and
then secure the reward at the cued location in the
appropriate upper arm (i.e., the agent has to move
away from the goal so that it can be secured later, as
in the coastal navigation example). It is this epistemic
behavior we hoped would emerge as a natural
consequence of minimizing expected free energy.
This may seem a remarkably simple problem but it
has all the ingredients necessary to illustrate the basic
aspects of behavior under active inference.

Formally, in terms of aMarkov decision process, there
are four control states that correspond to visiting, or
sampling, the four locations (the center and three arms).
For simplicity, we assume that each control state takes the
agent to the associated location (as opposed to moving in
a particular direction from the current location). This is
analogous to place-based navigation strategies thought to
be subserved by the hippocampus (e.g.,Moser, Kropff, &
Moser, 2008). There are four (locations) times two (right
and left reward) hidden states and 16 outcomes. The 16
outcomes correspond to the four locations times four
stimuli (cue right, cue left, reward, and no reward).
Having specified the state space, it is now only
necessary to specify the ðA;B;C;DÞ matrices encoding
transition probabilities and preferences. These are shown
in Figure 2, where the A matrix maps from hidden states
to outcomes, delivering an uninformative cue at the
center (first) location5 and a definitive cue at the lower
(fourth) location. The remaining locations provide a
reward (or not) with probability a ¼ 90% depending
upon the hidden context (right versus left reward).

The BðuÞ matrices encode control-dependent
transitions to the corresponding location, with the
exception of the baited (second and third) locations,
which are hidden states that the agent cannot leave. The
vector C determines prior preferences about outcomes.
These are expressed in terms of a softmax function of

utility, which determines the relative log probability of
each outcome. Here, the utility of the rewarding stimulus
is c and its absence ' c. This means, the agent expects a
rewarding outcome expð2cÞ times more than a null
outcome. For example, if c ¼ 1 it would expect a
reward about expð2Þ + 8 times more than no reward.
Note that utility is always relative and has a quantitative
meaning in terms of relative (log) probabilities of
preferred outcomes. This is important because it
endows utility with the same measure as information;
namely, bits or nats (i.e., units of information or
entropy, the former assuming base 2 logarithms and the
latter based on natural logarithms). This highlights the
close connection between value and information (see
below). Finally, the vector D specifies the agent’s
beliefs about the initial conditions; namely, that it starts
at the center location with equiprobable baiting of the
right or left arm.

Having specified the state space and contingencies,
one can iterate the variational updates (in Equation 11
and Figure 1) to simulate behavior. In these
simulations the outcomes were generated using the
contingencies of the generative model. In other
words, we assume the agent has already learned or
optimized its model of the generative process (in
terms of the model structure and its parameters). We
will revisit this assumption in the last section.

Figure 3 shows the results of simulations in terms of
performance (upper panel) and the dynamics of Bayesian
updating in terms of precision or simulated dopaminergic
responses (lower panels). The upper panel shows
performance as the percentage of successful (rewarded)
trials with increasing levels of utility, using six equally
spaced levels from c ¼ 0 to c ¼ 2. Performance was
assessed using 128 trials, under three different schemes:
Minimizing expected free energy, risk-sensitive (KL)
control, and maximizing expected utility. For
completeness, we also provide the results for the free
energy minimization when suppressing precision
updates. The three schemes can be considered as special
cases that result when successively removing terms from
the expected free energy (to give reduced forms indicated
by the brackets).

QτðπÞ ¼ EQðoτ ;sτ jπÞ½lnPðoτjsτÞ ' lnQðoτj~uÞ þ lnPðoτjmÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Expected utility|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KL control|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Expected Free energy

#

(12)

This expression shows that risk-sensitive control is the
same as minimizing expected free energy when
ignoring the (predictive) entropy of outcomes given

5The values of one half in the first block of the A matrix
(Figure 2) mean that the agent cannot predict the cue from that
location. In other words, there is no precise sensory information and
the agent is “in the dark.”
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hidden states. In other words, if every hidden state
generates a unique outcome, KL control and expected
free energy minimization would be the same.
Similarly, maximizing expected utility is the same as
minimizing KL divergence, if every outcome is
generated by a unique hidden state and we do not
have to maximize the entropy of outcomes. In short,
expected utility and classical reinforcement schemes
(Sutton & Barto, 1998) are special cases of risk-
sensitive control that are optimal when (and only
when) different hidden states generate different
outcomes. Similarly, risk-sensitive control is a
special case of free energy minimization that is
optimal when (and only when) different outcomes
are generated by different hidden states. These
special cases are important because they highlight
the epistemic value of informative observations, of
the sort that are precluded by noisy or context-

sensitive observations. This nesting within free
energy minimization may also explain the
prevalence of classical schemes in the literature,
given that they generally assume hidden states are
known to the agent.

The performance of the different schemes (see
Figure 4, upper panel) speaks to several intuitive
and useful points. First, all the schemes show an
increased success rate as utility or prior preference
increases; however, only expected free energy
minimization attains near optimal performance
(90%). One might ask why risk-sensitive control
performs so poorly, given it is also sensitive to
uncertainty. However, KL schemes only consider
uncertainty or risk induced by many hidden states
causing a single outcome, as opposed to many
outcomes caused by a single state. If we had used
more locations (say, with a radial maze), the benefits

Figure 2. A schematic of the hierarchical generative model used to simulate foraging in a three-arm maze (insert on the upper left). This
model contains four control states that encode movement to one of four locations (three peripheral locations and a central location). These
control the transition probabilities among hidden states that have a factorial or tensor product form with two factors. The first is the location
(one of four locations), while the second is one of two hidden states of the world, corresponding to a combination of cues (blue or green circles)
and rewarding (red) outcomes. Each of the ensuing eight hidden states generates an observation. Some selected transitions are shown as arrows,
indicating that control states attract the agent to different locations, where outcomes are sampled. The equations define the generative model in
terms of its parameters ðA;B;C;DÞ , θ as described in the main text. In this figure, σð(Þ is a softmax function and - denotes a Kronecker
tensor product. Although the graphics are arranged in rows, the vectors of states are actually row vectors.
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Figure 3. Upper panel: The results of 128 simulated trials assessed in terms of the probability of obtaining a reward. This performance is
shown as a function of prior preference over six equally spaced levels. The four profiles correspond to active inference (FE), risk-sensitive
control (KL), expected utility (RL), and active inference under fixed levels of precision (DA). See main text for a description of these schemes
and how they relate to each other. The two horizontal lines show chance (bottom line) and optimal (top line) performance, respectively. Lower
left panels: These report expected precision as a function of time within a trial (comprising three movements). The black lines correspond to a
trial in which the cue (CS) was first accessed in the lower arm of the maze in the previous figure, after which the reward (US) was secured. The
equivalent results, when staying at the center location and accessing the reward directly, are shown as red lines. The upper panel shows the
expected precision and the lower panel shows simulated dopamine responses (that produce an increase in precision, which subsequently
decays). Lower right panels: These show the equivalent results in terms of simulated dopamine discharges. The key thing to note here is that the
responses to the cue (CS) are increased when it is informative (i.e., accessed in the lower arm), while subsequent responses to the reward (US)
are decreased. See main text for details of these simulated responses.
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of risk-sensitive control would have been more
apparent (results not shown). This follows because
more locations induce more hidden states and a
greater degree of uncertainty that would call for
risk-sensitive control. The current setup illustrates
the importance of considering both sorts of
ambiguity in the mapping between causes and
consequences (one-to-many and many-to-one) that
calls for a minimization of expected free energy. In

this example, the most informative location is the
lower arm. Visiting this location and sampling the
informative cue reduces uncertainty about hidden
states and enables expected utility to dominate in the
second (and generally successful) move.

This optimal behavior is only apparent when utility
is greater than about c > 0:6 nats. This brings us to
our second point: If expected utility or preferences are
to supervene over epistemic value, then they have to

Figure 4. Simulated dopamine responses as a function of preference (upper panels) and uncertainty (lower panels). The left panels show the
expected dopaminergic responses using the same format as Figure 3, for three levels of preference (utility) and uncertainty in the upper and
lower panels, respectively. The right-hand panels show simulated dopaminergic firing in response to the cue (CS) and reward (US) based upon
these expectations. Note that the response to the cue (CS) increases with preference and a reduction in uncertainty.
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have greater value than the information gain
associated with informative outcomes. In this
example, the cue resolves uncertainty about the
hidden context (which arm is rewarding), thereby
providing one bit or lnð2Þ ¼ 0:6931 nats of
information. Intuitively, this means the utility must
be greater than the information gain to persuade an
agent to leave locations that provide unambiguous
(informative) outcomes.

The third point of note is that expected utility (and
risk-sensitive control) perform below chance levels
when utility is zero (note that chance performance is 3

8
because the agent can make two moves and is trapped
by two locations). This reflects the fact that the upper
arms no longer hold any utilitarian attraction and
become unattractive because of the slightly ambiguous
outcomes implicit in the probabilistic reward schedule.
In other words, the most valuable policy is to stay in the
epistemically valuable (lower) location for as long as
possible.

The last set of simulations under a fixed level of
precision γ_ ¼ 1 show that optimal choice behavior
rests on updating expected precision, which we now
look at more carefully. The lower panels of Figure 3
show how expected precision is updated during a trial
of two movements and three outcomes under a high
level of utility c ¼ 2. These simulations are presented
to highlight the similarity between precision updating
and empirical dopamine responses during the
presentation of conditioned and unconditioned
stimuli. The upper left panel shows the expected
precision over variational updates, with 16 updates
between observations. The black lines correspond to
a trial in which the agent accessed the conditioned
stimulus (CS or cue) in the lower arm and then
secured the unconditional stimulus (US or reward)
on moving to an upper arm. The red lines show the
equivalent updates in a second trial, when the agent
stayed at the central location for the first move and
was then presented with the US. In both situations,
the precision increases with each successive outcome;
however, the expected precision is higher in the first
trial, when the CS reduces uncertainty about the
hidden states or context in which the agent is
operating. This reflects the greater epistemic value
of accessing the cue. Crucially, the precision of the
final state is roughly the same for both trials. The
implication of this is that expected precision
increases on presentation of the CS and, necessarily,
increases less on presentation of the subsequent US,
relative to presentation of the US alone.

This difference can be highlighted by plotting the
expected precision in terms of simulated
dopaminergic discharges, which are thought to

reflect changes in expected precision or value. More
exactly, the lower left panel shows simulated
dopamine discharges that would, when convolved
with a decaying exponential response function (with
a time constant of 16 iterations) reproduce the
expected precision in the upper panel. In other
words, we are assuming that dopamine mediates
increases in precision that subsequently decay with a
fixed time constant. In this format, one can clearly see
the phasic responses of expected precision (simulated
dopaminergic discharges) where, crucially, the
presentation of the CS reduces the response to the
US. This reproduces the well-known transfer of
dopamine responses from a US to a CS in operant
paradigms (Schultz, Apicella, & Ljungberg, 1993).

The right panels of Figure 3 shows simulated
dopamine discharges assuming that an expected
precision of one is encoded by 128 spikes per bin
(and firing rates are sampled from a Poisson
distribution). These are remarkably similar to
empirical results, often interpreted in terms of
reward prediction error and temporal difference
models of value learning. However, the current
framework offers a nuanced perspective; namely, the
CS has epistemic value that reduces uncertainty about
what will happen next. This uncertainty is already
resolved when the US is presented, thereby
attenuating the precision-dependent responses it
elicits. Put simply, the transfer of dopaminergic
responses to conditioned stimuli, in higher-order
operant paradigms, can be thought of as reporting
the confidence (precision) that policies will bring
about predicted outcomes.

The composition of extrinsic and epistemic value
implicit in expected free energy can also be used to
reproduce the empirical responses of dopaminergic
cells to CS under different levels of reward and
uncertainty (Fiorillo et al., 2003). Figure 4 shows
simulated dopamine responses under increasing
utility c ¼ f0; 1; 2g : a ¼ 0:5 and different levels of
uncertainty about the reward probability
a ¼ f0:5; 0:7; 0:9g : c ¼ 2. In both cases, the
response to the CS increases in a way that is
remarkably reminiscent of empirical results (Fiorillo
et al., 2003). Interestingly, the tonic responses appear
to be more sensitive to uncertainty (lower panels) than
utility (upper panels). This is also seen empirically,
although the tonic responses reported in Fiorillo et al.
(2003) increased in a ramp-like fashion under higher
levels of uncertainty (i.e., a ¼ 0:5). This phenomenon
is not reproduced in Figure 5, however. Generally,
precision increases as the trial progresses because
agents become increasingly confident about their
policies. One can see this general trend in Figure 4.
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Summary

In summary, we have seen that optimal choice
behavior, in a very simple paradigm, rests on
resolving uncertainty about future choices implicit in
minimizing expected free energy. This aspect of

optimal behavior is clearly disclosed when decisions
under uncertainty are confounded, not only by a
many-to-one mapping between hidden states and
outcomes, but also between outcomes and hidden
states (c.f., Littman, Sutton, & Singh, 2002). In this
general setting, the role of epistemic value becomes
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Figure 5. Upper panel: Learning in terms of success rate as a function of trials, for eight successive trials in an initially unknown maze. The
results are averaged over 128 realizations. Performance (gray lines) shows a progressive improvement as uncertainty about the hidden states
falls (pink lines). The equivalent performance for a conventional expected utility scheme is shown with broken lines. Lower panels: Simulated
dopamine responses over all iterations and trials shown in terms of average precision (middle panel) and simulated dopaminergic spike rates
(lower panel). These results demonstrate the transfer of simulated dopamine responses to the cue (CS) with learning (gray arrows).
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paramount in resolving uncertainty about what to do
next—a resolution that can be construed in terms of
exploration or foraging for information. Furthermore,
the integrative framework provided by free energy
minimization enforces a dialogue between utility and
information by casting both as log probabilities. This
means every utility or reward can be quantified in
terms of information and every bit of information
has utility. We have considered the encoding of this
information in terms of precision, showing that
biologically plausible variational updates of expected
precision are remarkably consistent with empirical
dopaminergic responses. A key aspect of this
formulation is that the precision of beliefs about the
value of policies is itself an increasing function of
expected value. This means that if dopamine reports
(changes in) precision, it also reports (changes in)
expected value and, implicitly, reward prediction
error. So far, we have limited our discussion to
planning as inference and memory. In the final
section, we turn to the role of epistemic value in
learning and memory, touching on some important
issues that attend hierarchical inference and
contextualizing behavior.

LEARNING AND MEMORY AS
INFERENCE

This section uses the same setup but considers
multiple trials during which the agent has to learn
which locations deliver rewards and cues. In other
words, we introduce an extra hierarchical level to
the problem, where the hidden context now includes
the mapping between locations and actions (i.e.,
moving to the lower arm could take it to a
rewarding location). This means the agent has to
learn which locations offer cues and which offer
rewards. The motivation here is to illustrate a form
of learning that rests on exploring the environment
and to show that there is a Bayes-optimal transition
from exploration to exploitation. Crucially, this
solution rests upon exactly the same scheme as
above—the only thing that changes is the generative
model.

There are many ways of modeling learning in
this context. These range from Bayesian model
selection and averaging, aka structure learning
(FitzGerald, Dolan, & Friston, 2014), through
optimization of the model parameters ðA;B;C;DÞ ,
θ with respect to expected free energy, to casting
the problem as a hierarchical inference problem
(c.f., Ballard, Kit, Rothkopf, & Sullivan, 2013).
We will choose the latter because it requires no

extra theory6 and illustrates how hierarchical
inference contextualizes lower-level (habitual) action
selection. In brief, we will use Bayesian belief
updating that embodies the prior that the mapping
between locations and control states does not change
from trial to trial, but the location of the reward
changes between trials. The agent therefore has to
learn (infer) time-invariant (contextual) aspects of its
environment through exploration, before it can engage
in pragmatic goal-directed behavior. We will see that
this learning is an emergent property of minimizing
expected free energy at each move.

The setup

Our aim was to illustrate learning as inference by
introducing hierarchical uncertainty into the setup.
In other words, we wanted to see if the agent could
learn about its environment by introducing
uncertainty about which locations offered rewards
and cues. In discrete state-space formulations,
hierarchical extensions involve creating product
spaces, such that each lower-level state is
reproduced under each level of a higher-level state.
Here, we considered four higher-level hidden contexts
Sð2Þ corresponding to four mappings between each of
the three arms of the T-maze. More specifically, we
introduced four mappings between the three control
states and the associated hidden location states that
determine outcomes. This just involved changing the
following matrices, where we denote the hierarchical
level of parameters and states with superscripts (such
that A;B; . . . above become Að1Þ;Bð1Þ; . . . ):

A ¼ ½Að1Þ; . . . ;Að1Þ#

BðiÞ ¼

Bð1Þðj1iÞ

. .
.

Bð1Þðj4iÞ

2

664

3

775

C ¼ Cð1Þ

D ¼ 1
4

Dð1Þ

..

.

Dð1Þ

2

664

3

775

(13)

Here, jki returns the index of the i-th control state under
the k-th context; e.g., jk( ¼ ½1; 2; 4; 3#. This means that
there are now 32 hidden states S ¼ Sð2Þ - Sð1Þ (four

6For example, we do not have to worry about how the agent
learns all possible configurations of the maze.
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mazes, times four locations, times two reward contexts).
The agent now has two levels of uncertainty to resolve.
The first is induced by not knowing which maze it is
in and the second is resolved by the cue, if it can be
found. Neurobiologically, uncertainty about spatial
context may be reflected in hippocampal processing
(e.g., the “flickering” reported in Jezek, Henriksen,
Treves, Moser, and Moser 2011).

Variational updating at the second level
corresponds to replacing prior beliefs about hidden
states with posterior beliefs after the previous trial.
This corresponds to minimizing variational free
energy because beliefs about the initial state Qðs0Þ ¼
D ¼ s_0 become empirical priors that are informed by
previous trials:

s_
0
0 ¼ Es_

0
T

E ¼ Pðs00js0T ;mÞ
¼ ðð1' eÞI4 þ eÞ - ðDð1Þ - 1T8 Þ

(14)

Here, ðs0; sT Þ and are the posterior expectations at the
end of the previous trial and the beginning of the
current trial respectively, and where E ¼ Pðs0jsT ;mÞ
encodes beliefs that the maze will change with a small
probability e ¼ 1

8. This Bayesian belief updating is a
formal way of saying that agents remember what they
have learned from previous experience.

Figure 5, shows the results of this memory in terms
of success rate as a function of trials, for eight
successive trials in the same (randomly selected)
mazes. The results are averaged over 128
realizations. Performance (gray lines) shows a
progressive improvement as uncertainty about the
hidden states falls (pink lines). This uncertainty is
the entropy of posterior beliefs at the end of each
trial H ½QðsT Þ# (multiplied by 100 for visual display).
The equivalent performance for a conventional
expected utility scheme is shown with dotted lines.
The key thing to take from these results is that
performance becomes near optimal after about four
trials, at which point uncertainty falls to (nearly) zero.
This means that, on average, the agent has learned
which maze it is in after four trials and can then
invoke the exploitative strategy of the previous
section, first searching for the cue and then claiming
the reward.

Crucially, despite the fact there is no explicit
epistemic value involved in inference about the
environment (maze) at the between-trial level, a
failure to consider epistemic value at the within-trial
level has deleterious consequences for learning, in
that the expected utility agent fails to learn which

maze it is in (and is content to perform at the levels
it would even if it knew). Note that the performance
in Figure 5 never exceeds the performance shown in
Figure 3.

The lower panels of Figure 5 show simulated
dopamine responses (using the format of previous
figures) over all iterations and trials. These results
demonstrate the transfer of simulated dopamine
responses to the cue or conditioned stimulus as
learning progresses (gray arrows). These trial by trial
changes are accompanied by elevated tonic responses
after the CS—that reflect increasing confidence or
precision about the outcomes of policies as the agent
becomes familiar with its new environment
(Hollerman & Schultz, 1996; Niv, 2007).

Summary

This section has shown it is straightforward to create
hierarchical generative models, in which higher levels
provide a context for lower levels, by equipping the
model with a joint state-space S ¼ Sð2Þ - Sð1Þ and
associated transition matrices. This enables one to
consider contingencies that are conserved (or not)
over trials. In a multi-trial setting, priors over the
initial state of each successive trial become
empirical priors that minimize variational free
energy (in exactly the same way as beliefs are
updated within trials). This is simple to implement
using Bayesian belief updating and allows a natural
separation of temporal scales across hierarchical
levels. It is relatively easy to see how one could
generalize this to hierarchically deep models of the
sort that real agents have to deal with, e.g.,
S ¼ Sð3Þ - Sð2Þ - Sð1Þ.

This hierarchical augmentation reveals the role of
integrating extrinsic and epistemic value in enabling
the agent to learn which context it is operating in and
then exploit that knowledge. It is tempting to
associate this (inevitable and emergent) progression
from exploration to exploitation with the
transformation of goal-directed behavior into habits
(Balleine & Dickinson, 1998; Dolan & Dayan, 2013;
Pezzulo, Rigoli, & Chersi, 2013). Here, this Bayes
optimal progression rests upon a contextualization of
(first level) choice behavior by (second level)
Bayesian updating that effectively accumulates
evidence to resolve uncertainty about the
consequences of behavior. This resolution restricts
the repertoire of controlled state transitions that have
to be considered in selecting the optimal policy and
effectively increases the precision of action selection.
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One might think that much of the delicate balance
between exploration and exploitation could rest upon
hierarchical active inference of this sort.

DISCUSSION

Formal approaches to decision-making under
uncertainty generally rest on partially observable
Markov decision processes, in which states are not
directly observable but have to be inferred from
observations. This formalism raises two fundamental
issues that can be cast in terms of the exploration-
exploitation dilemma. First, in relation to inference, in
some circumstances an agent might obtain a larger
reward by performing an epistemic (explorative)
action rather than a more greedy (pragmatic) action.
Second, in relation to learning, an epistemic action
may be more appropriate to resolve uncertainty about
aspects of its generative model. In classical
formulations, the exploration-exploitation dilemma is
usually solved with ad hoc solutions (like changing
the precision of softmax decision rules). Here, we
introduce a theoretical framework within which a
solution to the exploration-exploitation dilemma
emerges normatively from the minimization of
expected free energy. For example, the precision or
temperature parameter of softmax response rules
becomes a parameter of the generative model and
thereby acquires a Bayes optimal value.

More specifically, we have introduced a modeling
framework for choice behavior that can be framed in
terms of discrete states or (partially observed) Markov
decision processes. There are two perspectives on this
framework. People familiar with active inference could
consider this work to show that the minimization of
expected free energy furnishes a sufficient account of
choice behavior under uncertainty. This necessarily
entails epistemic action, providing a formal account of
risk-sensitive or KL control and expected utility theory.
The ensuing scheme also has construct validity in
relation to Bayesian surprise and information theoretic
formulations of search behavior. Crucially, the
minimization of expected free energy eschews ad hoc
parameters associated with conventional treatments
(e.g., softmax parameters). Furthermore, active
inference under hierarchical models may provide a
useful framework within which to consider the
contextualization of low-level behaviors that involves
a natural (Bayes-optimal) progression from exploration
to exploitation. Finally, it enables one to finesse the
combinatorics of difficult or deep Markovian problems
using approximate Bayesian inference—and a message
passing scheme that is not biologically implausible. In

particular, the variational updates for expected precision
show many similarities to empirical dopaminergic
responses.

Our simulations suggest that it is difficult to
completely suppress precision updates (dopaminergic
responses), even when outcomes are very predictable
(because every event portends something in our finite
horizon setup). This contrasts with the classic results of
Schultz and colleagues (Schultz et al., 1993), who found
negligible responses to conditioned stimuli after
learning. On the other hand, we were able to
reproduce the empirical findings under conditions of
uncertainty and predictive reward (Fiorillo et al., 2003;
Schultz, 1998). Furthermore, the simulations reproduce
the empirical observation that dopaminergic responses
are transferred directly from the unconditioned stimuli
to the conditioned stimuli, in the absence of any
responses during the intervening period. Detailed
response characteristics of this sort may provide
important clues that may disambiguate, or further
refine, theoretical accounts of dopaminergic function.

The second perspective on this work could be
taken by people familiar with reinforcement
learning, a branch of machine learning inspired by
behavioral psychology (Sutton & Barto, 1998). From
this perspective one can trace the steps that lead from
normative descriptions based upon expected reward
or utility to active inference and variational free
energy minimization:

● The first step is to reformulate reinforcement
learning or game theory problems as pure infer-
ence problems, i.e., planning as inference
(Botvinick & Toussaint, 2012; Still, 2009; Still
& Precup, 2012; Vijayakumar, Toussaint, Petkos,
& Howard, 2009). This means that reward or
utility functions become log probabilities defin-
ing prior beliefs or preferences about future out-
comes. This induces probability distributions
over policies that produce outcomes—and the
precision of those distributions. This is important
because it defines a Bayes-optimal precision for
selecting among policies (Friston et al., 2014).
Furthermore, casting reward or utility in terms of
log probabilities means that they have the same
currency as information (nats or bits), thereby
providing a natural way to combine the value
of an outcome and the value of information.

● The second step rests on accommodating uncer-
tainty or risk over outcomes. When the expected
utility of two choices is the same but one leads to
several outcomes and the other a single outcome,
then optimal behavior is not uniquely defined by
expected utility. The simplest way to
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accommodate uncertainty (risk) of this sort is to
maximize both expected utility and the entropy of
outcomes. Maximizing the expected entropy of
outcomes effectively keeps one’s options open
(Klyubin, Polani, & Nehaniv, 2008). However,
the sum of an entropy and expected utility can
always be expressed as a (negative) KL diver-
gence, leading to risk-sensitive or KL control.
Formally, maximizing the expected utility and
entropy of outcomes is equivalent to minimizing
the KL divergence between the expected (predic-
tive) distribution over outcomes and the distribu-
tion specified by the utility function. In
behavioral terms, maximizing the entropy of con-
trolled outcomes can be understood in terms of
novelty bonuses and related concepts (Bach &
Dolan, 2012; Daw et al., 2005; De Martino,
Fleming, Garrett, & Dolan, 2012; Kakade &
Dayan, 2002; Wittmann et al., 2008). In econom-
ics, there is a conceptual link with Shackles’
formulation of potential surprise and the crucial
role of money in facilitating risk-sensitive control
(Shackle, 1972): If I am not sure what I want to
buy, then I will save my money (liquid assets)
and buy something later (maximize the entropy
over future purchases—a fiscal Ockham’s Razor).

● Risk-sensitive or KL control works fine if there is no
uncertainty or ambiguity about hidden states given
observed outcomes. However, when the same state
can lead to several outcomes (e.g., noisy or ambig-
uous cues), we have to augment the KL divergence
with the expected entropy over outcomes given the
hidden states that cause them. Minimizing this
entropy ensures that hidden states generating ambig-
uous (high entropy) outcomes are avoided. In other
words, observations that resolve uncertainty about
hidden states become intrinsically valuable.
However, the sum of the expected conditional
entropy and the KL divergence is the expected free
energy that scores the quality or value of a policy.
This brings us to active inference and the minimiza-
tion of expected free energy that is sensitive to both
risk and ambiguity.

In what follows, we consider some of the
theoretical implications of these arguments, in
relation to established approaches in psychology and
artificial intelligence.

Curiosity and Bayesian surprise

Epistemic value and implicit exploratory behavior are
related to curiosity in psychology (Harlow, 1950;

Ryan & Deci, 1985) and intrinsic motivation in
reinforcement learning (Baldassarre & Mirolli, 2013;
Barto, Singh, & Chentanez, 2004; Oudeyer & Kaplan,
2007; Schembri, Mirolli, & Baldassare, 2007;
Schmidhuber, 1991). Here intrinsic stands in
opposition to extrinsic (e.g., drive or goal) value.
While we have focused on reducing uncertainty
during inference, most reinforcement learning
research uses curiosity or novelty-based mechanisms
to learn a policy or model efficiently. The general idea
here is that an agent should select actions that
improve learning or prediction, thus avoiding
behaviors that preclude learning (either because
these behaviors are already learned or because they
are unlearnable). It has often been emphasized that
adaptive agents should seek out surprising stimuli,
not unsurprising stimuli as assumed in active
inference. This apparent discrepancy can be
reconciled if one considers that surprising events, in
the setting of curiosity and Bayesian surprise, are
simply outcomes that are salient and minimize
uncertainty. In active inference, agents are surprised
when they do not minimize uncertainty. It is salient
(counterfactual) outcomes that optimize exploration
(and model selection) and salience-seeking behavior
stems nicely from the more general objective of
minimizing expected free energy (or surprise proper).

There is, however, an important difference
between active inference and the concepts of
curiosity and Bayesian surprise, at least as they are
usually used. Salience is typically framed in “bottom-
up” terms, in that the agents are not assumed to have
a particular goal or task. This is also a characteristic
of curiosity (and similar) algorithms that try to learn
all possible models, without knowing in advance
which will be useful for achieving a specific goal.
The active inference scheme considered here
contextualizes the utilitarian value of competing
policies in terms of their epistemic value, where the
implicit reduction in uncertainty is (or can be) tailored
for the goals or preferred outcomes in mind.

Active inference and the exploitation-
exploration dilemma

The active inference formulation effectively combines
belief state updates, action selection, and learning under
a single imperative. In principle, this results in the
efficient learning of both the structure of the
environment and the selection of the suitable policies,
thereby avoiding the problems of model-free
reinforcement learning algorithms (Sutton & Barto,
1998). Model-free schemes need to relearn a policy
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every time the environment changes (Ognibene, Pezzulo,
&Baldassarre, 2010). Active inference offers a principled
solution to the exploration-exploitation dilemma and, in
contrast with model-based learning, will not waste time
modeling irrelevant aspects of the environment (Atkeson
& Santamarıa, 1997). This may enhance learning through
generalization, by predominantly sampling features that
are conserved when the environmental context changes
(Ognibene & Baldassarre, 2014; Walther, Rutishauser,
Koch, & Perona, 2005).

Furthermore, active inference extends established
metaphors for purely perceptual processing, in
particular, hierarchical Bayesian filtering and predictive
coding (Clark, 2013; Friston, 2010; Lee & Mumford,
2003; Rao & Ballard, 1999). These perspectives can
explain several aspects of cortical hierarchies (Dayan
et al., 1995) and provide a nice perspective on the brain
as an organ that adapts to model and predict its sensory
inputs. This is particularly important because the
resulting hierarchical representation (deep generative
model) can account for sensorimotor regularities
produced by action (Lungarella & Sporns, 2006;
O’Regan & Noë, 2001). In turn, this can improve
learning and inference, which depend sensitively on an
efficient and sparse (hierarchical) representation of active
sampling and sensorimotor learning (Ballard et al., 2013;
Barto et al., 2004; Tani & Nolfi, 1999). From a modeling
perspective, the integration of learning, belief updating,
and action selection may allow one to study, in a
principled manner, how perception supports learning
and how learning can result in different internal
representations (Little & Sommer, 2013; Lungarella &
Sporns, 2006; Ognibene &Baldassarre, 2014; Verschure,
Voegtlin, & Douglas, 2003).

This may be particularly important when modeling
inference and behavior in tasks where the agent has
no detailed knowledge of the environment, e.g.,
foraging in open and changing environments,
possibly with other agents. These difficult problems
have limited the application of the MDP framework to
tasks with definitive and detailed representations,
such as navigation in grid-based mazes. In open
environments, epistemic behaviors have been largely
described with heuristic (Brooks, 1991; Itti & Koch,
2001) or stochastic processes such as Lévy flight
(Beer, 1995; Viswanathan et al., 1999). However,
modeling these problems within the active inference
framework may reveal the formal nature of these
processes and their neuronal correlates.

Bayesian Reinforcement Learning (e.g., Cao &
Ray, 2012) also provides a principled approach to
the exploration-exploitation trade-off and explicitly
models uncertainty about the quality of alternative

policies. Because active inference tackles both the
problems of learning and of exploration under
partial observations in a coherent manner, it would
be interesting to see if Bayesian reinforcement
learning could be formulated in terms of active
inference. This may be useful, because the current
scheme offers computational efficiency, by
exploiting variational Bayesian techniques (c.f.,
Furmston & Barber, 2010), accommodates formal
constraints on the structure of policies, and comes
with a biologically plausible process theory.

Applications

While these are clearly interesting theoretical issues, the
purpose of this paper is also pragmatic. The simulations
presented in this paper all use one (Matlab) routine that
only requires the specification of the generative model
in terms of its ðA;B;C;DÞ , θ parameters. Crucially,
integrating this scheme, for any given set of choices and
outcomes, provides a generative model of empirical
choice behavior. This means, one can estimate the
parameters that are unique to a particular subject
(human or animal) using standard (meta-Bayesian)
schemes (Daunizeau et al., 2010). These parameters
include the sensitivity to particular outcomes, beliefs
about experimental contingencies, and the overall
confidence (and confidence in confidence) encoded by
a subject’s hyperpriors over precision, e.g.,
ðc; a; α; βÞ , θ. This enables a cognitive and possibly
physiological phenotyping of subjects using behavioral
and physiological responses respectively. Furthermore,
one could use Bayesian model comparison to assess
whether subjects use expected utility, risk-sensitive
control, or full active inference. Indeed, we have
shown that the choice behavior and fMRI responses in
the dopaminergic midbrain area are better explained in
terms of KL control, relative to expected utility using
this approach (Schwartenbeck, FitzGerald, Mathys,
Dolan, & Friston, 2014). We hope to pursue a similar
approach to exploration and decision-making under
uncertainty in future work.
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APPENDIX A

Lemma (predictive free energy): Under a generative
model Pðsτ ; oτjπÞ ¼ Qðsτjoτ; πÞPðoτjmÞ and policy π,
the negative free energy of the approximate posterior
predictive density is " : τ > t

QτðπÞ ¼ 'EQðsτ jπÞ½H ½PðoτjsτÞ##|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted uncertainty

'D½QðoτjπÞjjPðoτjmÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted divergence

A1:1

Proof: The expected free energy of the approximate
posterior predictive distribution over hidden states
(under policy π at τ > t in the future) is the
expected energy minus its entropy (where the energy
of a hidden state Gðsτ ; πÞ is itself an expectation over
outcomes):

Gðsτ ; πÞ ¼ ' EPðoτ jsτÞ½lnPðoτ ; sτ jπÞ#
FτðπÞ ¼ EQðsτ jπÞ½Gðsτ; πÞ# ' H ½QðsτjπÞ#

A1:2

This means the quality or value of the policy is:

QτðπÞ¼ 'FτðπÞ
¼ EQðoτ ;sτ jπÞ½lnPðoτ ;sτ jπÞ' lnQðsτ jπÞ#
¼ EQðoτ ;sτ jπÞ½lnQðsτ joτ ;πÞþ lnPðoτ jmÞ' lnQðsτ jπÞ#
¼ EQðoτ ;sτ jπÞ½lnQðoτ jsτ ;πÞþ lnPðoτ jmÞ' lnQðoτ jπÞ#
¼ 'EQðsτ jπÞ½H ½Pðoτ jsτÞ##|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Predicted uncertainty

'D½Qðoτ jπÞjjPðoτ jmÞ#|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted divergence

Q sτ jπð Þ¼ EQðstÞ½Pðsτ jst;πÞ#
Q oτ jπð Þ¼ EQðsτ jπÞ½Pðoτ jsτÞ#

Q oτ ;sτ jπð Þ¼ Pðoτ jsτÞQðsτ jπÞ
A1:3

Where Qðoτjsτ; πÞ ¼ Pðoτ jsτÞ is the (predictive)
likelihood of the (predictive) generative model

Remarks: Intuitively, the generative model of future
states encodes beliefs that certain outcomes in the
future are surprising (irrespective of the current state
or policy), while future hidden states (given those
outcomes) are surprising when they are not
predicted. This generative model is defined in terms
of a posterior (predictive) distribution over hidden
states and a prior over outcomes. This contrasts with
the usual construction of a generative model of past
outcomes, in terms of a likelihood and prior over
hidden states. Heuristically, this reflects the fact that
current outcomes are caused by past transitions
among hidden states but future outcomes can cause
current state transitions (through policy selection).

Note that when τ ¼ t, the outcome is observed and
the expected free energy reduces to the free energy of
approximate posterior beliefs about hidden states:

GðstÞ ¼ ' lnPðot ; stÞ
Ft ¼ EQðstÞ½GðstÞ# ' H ½QðsτÞ#

A1:4

Optimizing this free energy corresponds to Bayes
optimal state estimation; however, because this free
energy functional has no concept of the future it
cannot support purposeful behavior or active
inference.

APPENDIX B

The variational updates are a self-consistent set of
equalities that minimize variational free energy. Let
~x ¼ ~st; ~u; γ denote the hidden variables and x_ ¼
s_t; π

_
; γ_ denote their sufficient statistics. Using the

dot notation A ( B ¼ ATB, the variational free energy
can be expressed in terms of its energy and entropy
(with Bða0Þs

_

0 ¼ D):

Fð~o; x_Þ ¼ ' EQ½lnPð~o;~xjmÞ# ' H ½Qð~xjx_Þ#
¼ s_t ( ðln s

_

t ' lnA ( ot ' lnðBðat'1Þs
_

t'1ÞÞ
þ π_ ( ðln π_ ' γ_QÞ þ βγ_

þ αðln α' ln γ_ ' ln β ' 1Þ

EQ½lnPð~o;~x mj Þ# ¼ EQ½lnPðot jstÞ þ lnPðstjst'1; at'1Þs
_

t'1

þ lnPð~ujγÞ þ lnPðγjβÞ#
¼ s_t ( ðlnA ( ot þ lnðBðat'1Þs

_

t'1ÞÞ

þ γ_Q ( π_ þ ðα' 1ÞðψðαÞ ' ln β
_

Þ ' βγ_

þ α ln β ' lnΓðαÞ

H ½Qð~x x_
"" Þ# ¼ α' ln β

_

þ ln ΓðαÞ
þ ð1' αÞψðαÞ ' π_ ( ln π_ ' s_t ( ln s

_

t

A2:1

Differentiating the variational free energy with respect
to the sufficient statistics gives

@F

@s_t
¼ 1þ ln s_t ' lnA ( ot ' lnðBðat'1Þs

_

t'1Þ ' γ_ ( !
s_
Q ( π_

@F

@π_
¼ 1þ ln π_ ' γ_ (Q

@F

@γ_
¼ β 'Q ( π_ ' β

_

A2:2
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Finally, we obtain the variational updates by solving
for zero and rearranging to give:

ln s_t ¼ lnA ( o_t þ lnðBðat'1Þs
_

t'1Þ ' 1

ln π_ ¼ γ_ (Q' 1

β
_

¼ β 'Q ( π_
A2:3

For simplicity, we have ignored the derivative of
value with respect to the hidden states (numerically,
this simplification appears to make little difference in
the Markov decision processes considered in this and

previous papers). Including this term leads to an
additional term in the (Bayesian filter) updates of
expected states corresponds to an optimism bias
(Friston et al., 2014).

The variational updates for precision can be
multiplied by ð1' λÞ and rearranged to give:

β
_

¼ λβ
_

þ ð1' λÞðβ 'Q ( π_Þ A2:4

This effectively slows the updates to provide a more
time-resolved model of the implicit (e.g., dopamine)
dynamics. In this paper, we used λ ¼ 1

4.
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Abstract: Free energy models of learning and acting do not
only care about utility or extrinsic value, but also about
intrinsic value, that is, the information value stemming
from probability distributions that represent beliefs or
strategies. While these intrinsic values can be interpreted
as epistemic values or exploration bonuses under certain
conditions, the framework of bounded rationality offers a
complementary interpretation in terms of information-
processing costs that we discuss here.

In the information-theoretic model of bounded
rationality (Braun, Ortega, Theodorou, & Schaal,
2011; Ortega & Braun, 2011, 2013), a bounded
rational decision-maker has a prior strategy P0ðaÞ and
a probabilistic model P0ðsjaÞ about the states s 2 S that
might result from taking action a 2 A. The decision-
maker plans to optimize a real-valued utility function
U : S! A ! R that can be evaluated for any ðs; aÞ
pair. As the decision-maker is bounded, the posterior
strategy PðaÞ after deliberation can only deviate from
the prior strategy P0ðaÞ by a certain number of bits of
information, that is DKLðPðaÞjjP0ðaÞÞ . K. Similarly,
the decision-maker might have model uncertainty
(Hansen & Sargent, 2008) and thus consider any

model PðsjaÞ that is within a given deviation from the
prior model P0ðsjaÞ, that is,DKLðPðsjaÞjjP0ðsjaÞÞ . C.
Mathematically, the bounded rational decision-
maker behaves as if solving the following variational
problem

max
PðaÞ

ext
PðsjaÞ

X

a

PðaÞ
X

s

PðsjaÞ

Uðs; aÞ ' 1
α
log

PðaÞ
P0ðaÞ

' 1
β
log

PðsjaÞ
P0ðsjaÞ

# $ (1)

with the solution P)ðsjaÞ ¼ P0ðsjaÞexpfβUðs; aÞg=
ZβðaÞ and P)ðaÞ ¼ P0ðaÞexpfαβ logZβðaÞg=Zα, where

α 2 Rþ and β 2 R are the boundedness parameters of
the constrained decision problem and Zα; ZβðaÞ are
normalizing constants. For β < 0 we have the extremum
operator ext¼ min and for β > 0 we have ext¼ max.
The perfectly rational expected utility maximizer is
obtained in the limit α ! 1 (perfect choice of action)
and β ! 0 (perfect trust in prior beliefs).

We now attempt to derive Equation (5) in the
Discussion Paper by Friston et al. (this issue) from
(1) to gain further insight into their assumptions. The
expression (1) can be rewritten as

max
PðaÞ

ext
PðsjaÞ

X

a

PðaÞ

' 1
β
DKL½PðsjaÞjjPdesðsjaÞ# '

1
α
log

PðaÞ
P0ðaÞ

' 1
β
logZβðaÞ

# $
;

(2)

where we have defined the desired target probability
PdesðsjaÞ ¼ P0ðsjaÞexpfβUðs; aÞg=ZβðaÞ in which
ZβðaÞ is a normalizing constant that depends on the
action. Here, the utility is expressed as an
informational difference between the actual and the
desired distribution over observations. Accordingly,
the utility-maximizing decision-maker of Equation (1)
can be equivalently thought to minimize surprise as
described by Equation (2). To obtain Equation (5) of
the Discussion Paper, we must make two additional
assumptions: (1) we neglect the cost of action
selection (α ! 1); and (2) we assume that PdesðsjaÞ ¼
PdesðsÞ does not depend on the action a, which is the
case, for example, in active inference models where© 2015 Taylor & Francis
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PdesðsÞ is thought to represent the decision-maker’s
preferences over outcomes. Then, the variational
problem in Equation (2) becomes equivalent to
Equation (5) of the Discussion paper, that is,

' DKL½PðsjaÞjjPdesðsÞ#
¼ EPðsjaÞ½logPdesðsÞ#|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

extrinsic'value

þ H ½PðsjaÞ#|fflfflfflfflfflffl{zfflfflfflfflfflffl}
intrinsic'value

; (3)

which is to be maximized with respect to PðsjaÞ. From
the point of view of bounded rationality, maximizing the
intrinsic and extrinsic values corresponds to choosing an
action that maximizes the expected utility, but subject to
minimizing the information costs of deviating from a
prior strategy and a prior belief model.

Since both actions and observations follow essentially
the same variational principle, the distinction between
extrinsic and epistemic value does not hinge on the
presence of hidden or observable states, but appears
already in the simplest scenario with a single action
variable a with

max
PðaÞ

X

a

PðaÞ UðaÞ ' 1
α
log

PðaÞ
P0ðaÞ

# $

¼ max
PðaÞ

X

a

PðaÞ ~UðaÞ þ 1
α
H ½PðaÞ#

 !

(4)

where we have defined a modified utility
~UðaÞ :¼ UðaÞ þ 1

α logP0ðaÞ. Written in this form, the
free energy value of the policy PðaÞ consists of an
expected utility and an entropy. While this could be
interpreted as searching for a policy that “leaves options
open” or encourages exploration, the bounded rational
interpretation is that the decision-maker has limited
resources and cannot deviate too much from the prior.
If the prior P0ðaÞ is not explicitly considered in ~U , from
the point of view of bounded rationality it is still implied
as a uniform prior. The information processing costs
given by the informational deviation from the (implicit)
prior can also be interpreted in computational terms as a
sampling complexity (Daniel, 2014; Ortega, Braun, &
Tishby, 2014). In summary, the bounded rationality
approach offers a different perspective on epistemic
value in terms of intrinsic information processing costs.
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Abstract: Contrary to Friston’s previous work, this paper
describes free energy minimization using categorical
probability distributions over discrete states. This alternative
mathematical framework exposes a fundamental, yet
unnoticed challenge for the free energy principle. When
considering discrete state spaces one must specify their
granularity, as the amount of information gain is defined over
this state space. The more detailed this state space, the lower
the precision of the predictions will be, and consequently, the
higher the prediction errors. Hence, an optimal trade-off
between precision and detail is needed, and we call for
incorporating this aspect in the free energy principle.
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“If you take care of the small things,
the big things take care of themselves.
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You can gain more control over your life by
paying closer attention to the little things.”
Emily Dickinson, 1830–1886

There is much value in Dickinson’s advice. In this
commentary, we are particularly interested in the
epistemic value of detailed predictions (“paying
closer attention to the little things”) for free energy
minimization (“gaining more control over your life”).
We will show that specifying the granularity of state
spaces is crucial for minimizing free energy: When
the granularity is too low, little information is gained
from correct predictions; if it is too high, prediction
errors will be needlessly high.

In the target article, Friston and colleagues bring the
exploration-exploitation trade-off under the free energy
minimization regime, by assuming that the agent’s prior
beliefs are such that they expect to minimize future free
energy and plan their actions accordingly. Formally,
they describe their theory using partially observable
Markov decision processes (POMDPs) with discrete
states and actions; consequently, the generative models
are described using categorical probability distributions.
This approach overlooks the fact that “state” and
“action” in these models depend on the granularity (or
level of detail) of the state space and the actions
operating on them. Given that the required granularity
cannot be assumed to be fixed, as it may be context
dependent, any discrete free energy account will also
need to address the question of how the right level of
detail is determined.

For example, one may plan to shop for groceries. The
action “shop for groceries” is fairly abstract and may be
describedmore in detail as “first pick up some croissants
at the bakery, then head for the produce market to get
vegetables, and don’t forget to buy cat food”. Note that
the more detailed we make these predictions, the more
information they carry; however, they are also more
prone to prediction errors. When one expects to buy
this-and-that flavour of cat food from brand such-and-
so, then any other flavour or brand would result in a
prediction error. If, on the other hand, we expect merely
“to buy cat food”, then as long as we end up buying
some brand or flavour of cat food, regardless which one,
there would be no prediction error. Hence, increasing
the level of detail of predicted and actual outcomes will
—everything else being equal—increase average
uncertainty, simply because it will increase the entropy
of the probability distribution over possible outcomes.

A now classic objection of the free energy principle is
that it seems to predict that organisms would seek shelter
in a dark cave to defer from any sensory experiences and
hence minimize prediction errors (Thornton, 2010). Even
though a satisfactory answer may have been given to this

objection (Friston, Thornton & Clark, 2012), we raise a
novel problem that seems to generalize that idea and
follows naturally from the consideration of the level of
detail: Consider that one stands in the middle of Times
Square during rush hour, one can minimize prediction
errors by simply predicting that “stuff happens around
me” and interpret the sensory inputs accordingly. This
very low level of detail of expected and actual outcomes
will, by definition, lead to low free energy (prediction
errors), simply because there are fewer categories in the
probability distribution.

The example illustrates that predicting and
interpreting all our sensory experiences as “stuff
happens” is equally ineffective as staying in a dark
cave forever. Arguably, an individual that makes more
fine-grained predictions, e.g., by discriminating
between cars that are parked and cars that are
driving, will be more successful in the long run.
Making more fine-grained predictions than “stuff
happens” induces potential uncertainty and excessive
prediction errors, but it allows us to benefit by making
more informative predictions. In contrast, to assess
whether we should wait or whether we can walk the
street, it is seldom beneficial to make predictions that
are too detailed. It is of little use to predict the car
type and brand in order to prevent getting run over.
The added information from such a prediction is
outweighed by the increased prediction error when
the prediction turns out to be wrong. These
considerations show that somehow a trade-off needs
to be made between precision and detail.

As Friston et al. acknowledge, hyperpriors on the
(expected) precision are crucial for weighting
prediction errors (Clark, 2013; Friston, 2010). As we
highlighted with our examples, it is necessary to
extend the notion of hyperpriors to govern also level
of detail, as precision is a property of predictions at
every level of detail. Such an enhanced theory may
shed light on why and how we are able to make
predictions that trade off information gain and
prediction error, and how this fits in with free
energy minimization.
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The Free-Energy Principle (FEP) provides a powerful
normative framework to explain perception and
behavior. The all-encompassing ambition of the
endeavor becomes clear by the diversity of topics
covered from the “predictive coding” interpretation
of perception to the more recent focus on behavior
and “active inference.” However, for the broader
audience of the uninitiated, the goal of FEP, its
theoretical framework, and leverage may still be
elusive. We will try to identify some of the
challenges FEP is facing from the perspective of the
partially initiated, focusing on the somewhat equivocal
role that “goals” (as priors) have in the theory.

The main contribution in Friston et al. (this issue)
stems from reconciling two apparently opposed views
on the dopaminergic response as reflecting either reward
prediction (e.g., Schultz, 1998) or surprise (Redgrave &
Gurney, 2006). This putative reconciliation follows from
“casting reward or utility in terms of log-probabilities”
which allows for measuring them with a common
“information currency.” This step allows an elegant
blending of goal-directed and uncertainty-reducting
behavior without the use of specific parameters to
control the exploitation/exploration trade-off. However,
as the paper acknowledges, this has already been done in

risk-sensitive control (Van den Broek, Wiegerinck, &
Kappen, 2010; Ortega & Braun, 2011), thus, this
paper’s main contribution can also be seen as
extending risk-sensitive control to a model that
includes non-observable states. However, even if that is
a significant step forward from a computational
perspective, one may ask what does the prior step of
casting goals as probabilistic priors entail? Is it a
falsifiable statement? And what leverage would this
reformulation give us in terms of explanations and
predictions? To provide a counter example, the bottom-
up embodied Distributed Adaptive Control (DAC)
theory of the brain bootstraps goals from the
foundation of the self (Verschure, Pennartz, & Pezzulo,
2014); that is, goals emerge from needs that emerge to
reduce drives. DAC expands across a number of layers
(reactive, adaptive, and contextual) providing the system
with the means to achieve goals that ultimately serve
drive reduction, sustaining the physically instantiated
self from feeding to fighting and from reproducing to
self-realization. Here a large and variable set of goals
emerges, in turn comprising a multitude of states:
Perception, value, and action. In contrast, FEP seems
to replace all drives with a single one: The minimization
of surprise. If one now looks at where goals, formulated
as probabilistic priors, originate, FEP’s single drive
claim might be a trompe-l’oeil: Instead of explaining
goals, it adds an additional meta-goal. Hence, the
elegance of FEP comes for a price in terms of its
assumptions and this cost is not sufficiently considered.
In addition, FEP seems to strive toward the super power
of explaining everything. This, however, will make it
transcend the obligation of each theory to be testable.
Hence, with FEP the devil is in the priors.

Ever since Helmholtz’s work, we can look at the
brain as a prediction machine. We can note, however,
that Plato has already struggled with the issue of beliefs
as predictions in his Theaetetus (369 BC). Be that as it
may, the question now becomes: If computation can be
unified to such an extent in terms of FEP, why is the
brain so diverse in its implementation of prediction-
based mechanisms? The specific predictive
mechanisms that have been identified seem to differ
markedly across brain areas. For instance, prediction
in neocortical area A1 is mediated through recurrent
inhibition (Sánchez-Montañés, Konig, & Verschure,
2002), the hippocampus seems to use attractor
dynamics in coupled excitatory neurons for the same
purpose (Rennó-Costa, Lisman, & Verschure, 2014),
and the cerebellum relies on a well-defined tri-synaptic
nucleo-olivo-cortical loop to adjust its predictions based
on negative feedback (Herreros & Verschure, 2013), to
mention three distinct neuronal systems where
prediction modulates plasticity that we have directly
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studied in the context of the DAC theory. This
variability in the implementation in distinct systems
raises the fundamental question of how this apparent
conflict between the synthesis of a unified
computational framework of FEP and the diversity of
computational realizations in biology can be resolved.
Even if active inference succeeds in providing a unified
explanation of behavior, then FEP will still have to
backtrack and explain why evolution has de-unified its
implementation or it will be shown to be incomplete.

Concepts such as predictive coding, sensory
prediction-based motor control, risk-sensitive control,
and planning as inference have huge explanatory
power, and may end up reshaping our understanding
of the brain and directing future neuroscience research.
Free energy seems to provide a canvas integrating all of
them, but at present it is still difficult to see which is its
specific contribution. For instance, if such a
contribution stems from the self-consistent prior at the
heart of the active inference formulation, namely that
“any system that does not (believe it will) minimize the
long-term average of surprise does not (believe it will)
exist,” how can the neuroscience community benefit
from this insight or actually anyone who has the wish to
explain natural phenomena and derive predictions from
that explanation? In addition, FEP also faces the risk of
panpsychism by expanding the explanation to “any
system.”

In summary, the free energy and active inference
theories anticipate a Copernican shift in theoretical
neuroscience where commonly accepted concepts in
the twentieth century, like the perceive-think-act cycle
and the classical interpretation of a neuron’s receptive
field, are to be replaced by a more powerful
framework. It is, however, not about claiming to
have found a descendent of Copernicus, but rather
whether one has better explanatory and predictive
power combined with an enhanced ability to control
nature. We expect that in the future, as FEP and active
inference is applied to more scenarios, it will
eventually jump to the domain of controlling real-
world artifacts, as that is, we believe, the definitive
test for any theory of behavior and, as such, it will
facilitate the identification of the value of FEP in
understanding mind and brain.
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Abstract: The solution to the exploration-exploitation
dilemma presented essentially subsumes exploitation into
an information-maximizing model. Such a single-
maximization model is shown to be (1) more tractable
than the initial dual-maximization dilemma, (2) useful in
modeling information-maximizing subsystems, and (3)
profitably applied in artificial simulations where
exploration is costless. However, the model fails to resolve
the dilemma in ethological or practical circumstances with
objective outcomes, such as inclusive fitness, rather than
information outcomes, such as lack of surprise.
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The exploration-exploitation dilemma presents the
conflict between the need to obtain new
knowledge and the need to use that knowledge to
improve outcomes or performance (Laureiro-
Martínez, Brusoni, & Zollo, 2010). Friston et al.
(this issue) “offer a solution to the exploration-
exploitation dilemma that rests solely on the
minimization of expected free energy.” The
minimization of expected free energy is initially
described as maximizing extrinsic value while
maximizing information gain. Although this may
initially appear to simply restate the well-known
dilemma, a further operationalization of this “free
energy” definition leads to a model where the
problem of maximizing two outcomes is re-cast as
maximizing one of the two outcomes, namely
information gain. Expected value can be expressed
in terms of information—and expected information
gain has value. In other words, information and
value have the same currency and can be combined
into a single “free energy” imperative. Thus, the
minimization of expected free energy is also referred
to as minimizing surprise, or equivalently, as
maximizing Bayesian model evidence.

How then is the exploitation half of the exploration-
exploitation dilemma subsumed within a purely
information-gain model? This is done by expressing
“(extrinsic) reward in terms of (epistemic) information
gain. . . .” Specifically, “preferred outcomes are simply
outcomes one expects, a priori, to be realized through
behavior. . . .” Thus, by definition, a surprising outcome
—one where information was lacking—cannot be
preferred. This results in a resolution of the
exploration-exploitation dilemma by giving primacy to
information gain. Where contingencies are unknown,
“epistemic value is maximized until there is no further
information gain, after which exploitation is assured
through maximization of extrinsic value.” Such an
information-centric model must still account for the
need of action. This is done by noting that action is
important, because information gain requires sampling
the world to resolve uncertainty.

Resolving the dual-priority conflict by subsuming
one priority within the other provides enormous
advantages for mathematical tractability and
theoretical simplicity. It will also be readily
confirmed by observations from those parts of a
system designed to accomplish one of the two
priorities. However, such a resolution works only if
the simplifying assumptions are valid. Specifically, if
preferred outcomes are synonymous with expected
outcomes, then information gain becomes the

primary goal. The model breaks down, however, if
the preferred outcomes are objectively distinct from
information (i.e., where an outcome may be defined
separately from its informational characteristics). If
the outcome is, e.g., calories, survival, reproduction,
or inclusive fitness, then surprise is no longer
independently relevant except to the extent that it
impacts those external outcomes. In such cases, the
optimal tradeoff between exploitation and
exploration depends entirely upon environmental
circumstances, and no one strategy will be, a
priori, preferred.

Is it possible to construct a simulation in which
exploration (information maximization) is the
dominant goal? Yes. This is done by creating a
situation in which there are no returns to further
exploitation. The two-move foraging simulation in
Friston et al. (this issue) does this by ending the
game (via a trap door) after the first exploitation
move. Unlike the typical ethological circumstances
where each exploration move comes at the cost of a
foregone exploitation move, this simulation prohibits
two exploitation moves, and thus makes the initial
exploration move costless. Clearly, when exploration
is costless, an information-maximizing model will
dominate, as in the simulated trials. Just as clearly,
such a simulation provides no relevant information
for the actual underlying dilemma.

Is it possible to identify information-maximizing
neural processes in nature? Yes. This is done by
analyzing processes that are themselves information-
maximizing functions. Thus, we would fully expect
that information-maximizing processes, such as active
vision based upon salience or message-passing
schemes, would fully conform to an information-
maximizing model. However, in the more holistic
exploration-exploitation dilemma, relative
preferences for information-seeking as compared
with immediate experiential outcomes (calories,
temperature, sex) may change depending upon the
current condition of relevant homeostatic processes
(hunger, cold, lust). Thus, relative dopaminergic
gains for novel information may change relative to
gains for experienced sensation depending upon state
conditions (Gros, 2010) that themselves may reflect
changing environmental circumstances, leading back
to the core environmental-dependent exploration-
exploitation dilemma where no single a priori model
dominates and prior preferences are likely to be
highly context-dependent. Active inference provides
an excellent approach to modeling information
maximizing systems—and can be applied in
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simulations—but does not explicitly address the real
world exploitation-exploration dilemma inherent in an
agent’s context-sensitive preferences.
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Abstract: Metacognition concerns our monitoring and
control of mental operations (knowing what you know).
Much thinking about metacognition is liable to fall foul of
the classic homunculus problem: Nobody can specify who
or what does the “metacognition.” We describe how the
Active Inference and Epistemic Value (AIEV) model
offers an operationalization of epistemic behaviors which
can explain two example metacognitive phenomena:
Control and monitoring of word learning, and the search
for unretrieved information in the feeling of knowing.
Curiosity drives a search forward, but it is held in check
by considering the utility of what is retrieved from memory.

Nelson and Narens (1990) proposed the most widely
cited account of metacognition (knowing what you
know). In their framework, flows of information
between an object level and a meta-level are
characterized as representing monitoring and control

of cognitive processes. The processes at play in such
flows are not well specified (but see Fleming, Dolan,
& Frith, 2012) and fall foul of the classic homunculus
problem: Nobody can specify who or what does the
“metacognition” in their framework. In Friston et al.’s
paper we see a concrete operationalization of
epistemic behaviors that can explain metacognitive
phenomena; an inference-making machine based on
the principle of minimizing uncertainty and the
efficient expenditure of resources. We briefly outline
these ideas here, but the topic in general warrants a
much more developed examination.

A common task in assessing metacognition is to
learn a set of words over repeated trials. We infer that
attention is orientated toward items studied for the
first time because they are novel: Study times are
longer for items seen for the first time than at
subsequent repetitions. If we ask participants to
make an explicit declaration of their metacognitive
evaluation, they will give higher predictions of
subsequent performance for the items they have seen
more frequently. Importantly, more study time will be
allocated to items thought to be difficult to remember
or which are poorly learned. But a bi-directional
relationship also exists: It is because we study
something for longer, or that learning is non-fluent
that we rate things as difficult to remember (e.g.,
Koriat, Ma’ayan, & Nussinson, 2006).

According to Friston et al., there is an epistemic
value to divergences between expected and observed
behaviors in an ongoing task such as this. Friston
et al.’s system is intrinsically metacognitive:
“valuable policies will search out observations, cues,
or signs that resolve uncertainty about the state of the
world.” The formation and retention of “valuable”
policies explains the acquisition, adaption, and
implementation of mnemonic strategies (as opposed
to, for instance, trial-and-error learning), whereas the
search for cues and signs is the process of monitoring
the operations of the cognitive system. The
metacognitive system acts on epistemic feelings (see
Moulin & Souchay, 2013) to reduce inefficiencies
in the system—which are either unknowns or
uncertainties about current or future performance
based on current goals. In sum, active inference is
not random—because it is “tailored” toward goals
and receives feedback through Bayesian processes—
we argue that this process encapsulates the flows of
information captured in metacognitive notions of
control and monitoring. Technically speaking, the
active inference scheme described in the target article
is quintessentially metacognitive, because epistemic
value (the opportunity to minimize uncertainty) of
prior beliefs is a function of posterior beliefs about© 2015 Taylor & Francis
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uncertainty. In other words, at the heart of planning
through inference, there is a quantity (expected free
energy) that rests upon beliefs about beliefs.

In our word-learning example, the principle of
minimizing uncertainty will signal when the
processing fluency for a word in a list differs from
what is expected, and an efficient maximization of
information gain will allocate study time
appropriately (it will also “know” when to give up
when learning is impossible). Thus, Friston et al.’s
AIEV framework describes how feedback systems
operate to regulate human learning.

One of the strengths of the AIEVapproach is that it
draws upon Markov decision processes where states
are not directly observable and where there is, in
short, missing data. The state of “unknowns” in
metacognition is a pivotal point, as pointed out by
Fleming et al. (2012, p. 1285):

Object-level representations are often concerned with
presence of stimuli in the world; they rarely deal in
absence . . . . In contrast, “knowing I do not know” is
a meta-level representation of the absence of object-
level memory. Investigating this putative function
may benefit from greater integration with work
quantifying epistemic behaviour—by sampling
information over time, an agent can adaptively
reduce its uncertainty, achieving a balance between
the additional cost of exploration and the benefit of
gaining further information

In the Feeling of Knowing (FOK) phenomenon
(e.g., Souchay, Isingrini, & Espagnet, 2000) people
can accurately gauge the state of their memory
system, even when the searched for information
cannot be retrieved. When asked “Who was the
director of the film Black Swan?” we may find
ourselves unable to answer, but a set of
information may trigger decision-making as the
search for the answer unfolds in time. This search
for the answer is well represented by the epistemic
feeling of curiosity, and the drive to reduce
uncertainty. The FOK is a dynamic state, and
according to the AIEV view, based on a series of
exploratory searches for information inherent in
Markovian processes. The production (or not) of
information whilst searching promulgates or
terminates the search—and ultimately this can be
output as an explicit declaration: I don’t know/It’s
on the tip-of-my-tongue/Darren Aronofsky. A
certain excitation of the memory system exists at
such times, but when the epistemic value of search
is small, such as when retrieving irrelevant or
repetitive information, the search will be
terminated. Curiosity drives the search forward,

but it is held in check by considering the utility
of what is retrieved from memory (in comparison
with what is expected). Thus, the Friston et al.
article goes a long way to answering a critical
question in metacognition—what is it we know
when we think we do not know something? We
imagine that the answer to this question is that we
are aware of an epistemic process akin to that
described in the AEIV model.
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Abstract: Elucidating the cognitive, affective, and reward
processes that take place during music listening is the aim
of a growing number of researchers. Several authors have
used the Bayesian brain framework and existing models of
reward to interpret neural activity observed during musical
listening. The claims from Friston and colleagues regarding
the role of dopamine, as well as the demonstration that
salience-seeking behavior naturally emerges from
minimizing free energy, will be of potential interest to
those seeking to understand the general principles
underlying our motivation to hear music.

In a previous perspective piece (Schwartenbeck,
FitzGerald, Dolan, & Friston, 2013), it was suggested
that the Free Energy Principle formalisms in their
current state might not be sufficient “to explain all
aspects of higher level activities, such as the
appreciation of fine arts.” Nevertheless, one cannot help
but wonder what the appropriate formalisms would look
like. The current article summons similar interest. Not
least because the specific claims made are of
considerable relevance to the psychological and neural
underpinnings of music listening.

A first claim of interest is that of the role of
dopamine. Dopamine has been associated with
rewarding aspects of music listening via evidence of
recruitment of dopaminergic areas and through direct
observation of its release during the anticipation and
experience of peak emotional responses (e.g.,
Salimpoor, Benovoy, Larcher, Dagher, & Zatorre,
2011). Interpretations of such data have been made
variously in the context of the Incentive Salience
Theory and/or in the context of the Reward
Prediction Error hypothesis (Gebauer, Kringelbach,
& Vuust, 2012; Salimpoor et al., 2011). The claims
in Friston et al. (this issue) that dopamine may be
thought of as confidence or belief in an action and as
strongly related to so-called value would appear to be
more in line with the Incentive Salience hypothesis.
How this precise account of dopamine may be used to
interpret its presence (or not) during enjoyable (or not)
acts of musical listening is an interesting question.

Perhaps the most pertinent claim raised by Friston et
al., however, is that salience-seeking behavior naturally
emerges from the general objective of minimizing free
energy. Here it is interesting to note that appreciation of
artworks necessitates knowledge accumulation—and
this on several time scales. In music, while some
knowledge acquisition is implicit (for example,
learning the norms of one’s native tonal system),
others (for instance, learning the structure and form of
less popular musical styles) may require more effort.
While it is clear that some caution is in order, the attempt
of Friston et al. to demonstrate that free energy

maximizes intrinsic or epistemic value or, in other
words, exploratory actions, may have implications for
music listening specifically and art consumption more
generally.

Indeed, it is worth noting that the term Epistemic
emotions (encompassing emotions like interest,
curiosity, and fascination) has been used to describe
the affective states engaged while contemplating visual
art and music. Further, epistemic emotions have been
argued to be distinct from so-called Utilitarian
emotions in not being triggered by concern for
wellbeing or survival (Scherer, Coutinho, Cochrane,
& Fantini, 2013). Interestingly, this claim of a
relationship between feelings of interest and art
consumption resonates with Berlyne’s seminal work
on curiosity, arousal, and experimental aesthetics
(1960). It also resonates with the notion that
resolving uncertainty through epistemic or explorative
acts “makes the world interesting and exploitable.”

At this point, it is useful to emphasize why music
listening entails beliefs about policies or action. Here,
it is important to remember that attending to music is
an active process, and one that we carry out in the hope
of resolving any uncertainties elicited by the unfolding
musical narrative. An ambitious but relevant question
is how future accounts could conceptualize extrinsic
and intrinsic value or exploitation and exploration in
the context of music listening. One working
assumption could be that there is no extrinsic value
to be sought in music, therefore leading the agent to
always maximize intrinsic value. Another assumption,
however, could be that an exploration act involves
shifting attention to one of the many possible streams
in a complex piece of music, in the knowledge that,
once resolved, the given stream along with others
already resolved can be “exploited” to bring about
explicit value in terms of correct predictions.

In closing, various attempts have already been
made to use predictive coding as a framework with
which to interpret the role of dopamine in the
context of music listening (Gebauer et al., 2012).
Accordingly, the new claims by Friston et al.
regarding the role of dopamine will be of interest
to several workers in the field of music research.
Further, while one can certainly agree that the
formalisms are at present relatively underspecified
for some tasks, it is interesting to consider the
patterns that seem to be emerging. In its
justification of behaviors with intrinsic value and
only long-term benefits, Friston et al.’s free energy
formalisms provide support for psychological
accounts of the importance of interest, curiosity,
and exploratory behavior.
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