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What the brain is about  

ÅWhat do our imaging methods measure?  
 

Å Brain activity.  

 

ÅBut when does the brain become active? 

 

ÅWhen predictions (or their precision) have to be adjusted. 

 

Å 3Ï ×ÈÅÒÅ ÄÏ ÔÈÅ ÂÒÁÉÎȭÓ ÐÒÅÄÉÃÔÉÏÎÓ ÃÏÍÅ ÆÒÏÍȩ 

 

Å From a model. 
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What does this mean for neuroimaging?  

If brain activity  reflects model updating, we need to 

understand what  model  is updated in  what  way  to 

make sense of brain activity . 
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The Bayesian brain and predictive coding  

Model-based prediction updating is described by "ÁÙÅÓȭ 
theorem. 
 
 

     the Bayesian brain 

 

 

 

This can be implemented by predictive  coding . 
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Hermann von Helmholtz  



Advantages of model -based imaging  

Model-based imaging permits us to 
 
Å infer  the computational (predictive) mechanisms 

underlying neuronal activity. 

 

Ålocalize  such mechanisms. 

 

Åcompare  different models. 
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How to build a model  
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ό ὼ Sensory input Hidden states 

Prediction 

Inference based on 
prediction errors  

Fundamental ingredients: 



Example of a simple learning model  

Rescorla-Wagner learning: 
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Previous value 
(prediction)  

Learning rate 

Prediction error (ɿ) 

New input Inferred value of ὼ 

‘ ‘ ‌ό ‘  
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From perception to action  
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‗ ὼ 

Sensory input 

True 
hidden states 

Inferred 
hidden states 

Action 

ό 

ὥ 

World Agent 

Generative process 

Inversion of perceptual 
generative model 

Decision model 



From perception to action  

Å In behavioral tasks, we observe actions (ὥ). 

Å How do we use them to infer beliefs  (‗)? 

Å We invert (i.e., estimate) a decision model.  
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‗ ὼ 

Sensory input 

True 
hidden states 

Inferred 
hidden states 

Action 

ό 

ὥ 

World Agent 



Example of a simple decision model  

Å Say 3 options A, B, and C have values ὺ ψ, ὺ τ, and ὺ ς. 

Å Then we can translate these values into action probabilities via a 

«softmax» function: 

ὴὥ ὃ
Å

Å Å Å
 

Å The parameter ‍ determines the sensitivity to value differences 
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‍ πȢρ ‍ πȢφ 



All the necessary ingredients  

ÅPerceptual model (updates based on prediction errors) 

 

ÅValue function (inferred state -> action value) 

 

ÅDecision model (value -> action probability) 
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Reinforcement learning example ɉ/ȭ$ÏÈÅÒÔÙ ÅÔ ÁÌȢȟ ςππσɊ 
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OôDoherty et al. (2003), 

Gläscher et al. (2010) 



Reinforcement learning example  
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OôDoherty et al. (2003) 

Significant effects of 

prediction error with 

fixed learning rate 

 



Bayesian models for the Bayesian brain  
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ὴόὼȟό‮ȟὼὴᶿ‮ȟὼὴϽ‮ 

 
Å Includes uncertainty  about hidden states. 

 
Å I.e., beliefs have precisions.  

 
Å But how can we make them computationally tractable? 

‗ ὼ 

Sensory input 

True 
hidden states 

Inferred 
hidden states 

Action 

ό 

ὥ 

World Agent 



State of the 

world 
Model 

Log-volatility 

x3 

 of tendency 

Gaussian 

random walk with 

constant step 

size  ʊ

p(x3
(k)) ~ N(x3

(k-1), )ʊ 

Tendency 

x2 

towards 

category ñ1ò 

Gaussian 

random walk with 

step size 

exp(əx3+ɤ) 

p(x2
(k)) ~ N(x2

(k-1), exp(əx3+ɤ)) 

Stimulus 

category 

x1  
(ñ0ò or ñ1ò) 

Sigmoid trans-

formation of x2  

p(x1=1) = s(x2) 

p(x1=0) = 1-s(x2) 

0

x2

1

p(x1=1)

ὼ  

‖ȟ‫ 

‮ 

ὼ  

ὼ  

ὼ  

ὼ  

ὼ  

x3
(k-1)

p(x3
(k))

x2
(k-1)

p(x2
(k))

The hierarchical Gaussian filter (HGF): a computationally 
tractable model for individual learning under uncertainty  
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Å Inversion proceeds by introducing a mean field approximation and fitting  
quadratic approximations to the resulting variational energies (Mathys et al., 
2011). 

Å This leads to simple  one-step update  equations  for the sufficient statistics 
(mean and precision) of the approximate Gaussian posteriors of the states 
ὼ. 

Å The updates of the means have the same structure as value updates in 
Rescorla-Wagner learning: 

 

 

 

 

 

Å Furthermore, the updates are precision -weighted  prediction  errors . 

ɝ‘ᶿ
“

“
‏  

HGF: variational inversion and update equations  
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Prediction error 

Precisions determine 

learning rate 
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Example: Iglesias et al. (2013)  
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Model comparison: 



HGF: adaptive learning rate  
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Simulation: 4.1  ,2.2  ,5.0 =-== kwJ
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Individual model -based regressors  
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Uncertainty-weighted prediction error „Ͻ‏ 
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Example: Iglesias et al. (2013)  
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Example: Iglesias et al. (2013)  
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Example: Iglesias et al. (2013)  
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Example: Iglesias et al. (2013)  
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How to estimate and compare models:  
the HGF Toolbox 
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ÅAvailable at 

http://www.tranlsationalneuromodeling.org/tapas  

Å Interactive demo and manual 

ÅModular, extensible 

ÅMatlab-based 



(Ï× ÉÔȭÓ ÄÏÎÅ ÉÎ 30- 
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