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Role of the Medial Prefrontal Cortex in Impaired Decision
Making in Juvenile Attention-Deficit/Hyperactivity Disorder
Tobias U. Hauser, PhD; Reto Iannaccone, MS; Juliane Ball, PhD; Christoph Mathys, PhD; Daniel Brandeis, PhD;
Susanne Walitza, MD; Silvia Brem, PhD

IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) has been associated with
deficient decision making and learning. Models of ADHD have suggested that these deficits
could be caused by impaired reward prediction errors (RPEs). Reward prediction errors are
signals that indicate violations of expectations and are known to be encoded by the
dopaminergic system. However, the precise learning and decision-making deficits and their
neurobiological correlates in ADHD are not well known.

OBJECTIVE To determine the impaired decision-making and learning mechanisms in juvenile
ADHD using advanced computational models, as well as the related neural RPE processes
using multimodal neuroimaging.

DESIGN, SETTING, AND PARTICIPANTS Twenty adolescents with ADHD and 20 healthy
adolescents serving as controls (aged 12-16 years) were examined using a probabilistic
reversal learning task while simultaneous functional magnetic resonance imaging and
electroencephalogram were recorded.

MAIN OUTCOMES AND MEASURES Learning and decision making were investigated by
contrasting a hierarchical Bayesian model with an advanced reinforcement learning model
and by comparing the model parameters. The neural correlates of RPEs were studied in
functional magnetic resonance imaging and electroencephalogram.

RESULTS Adolescents with ADHD showed more simplistic learning as reflected by the
reinforcement learning model (exceedance probability, Px = .92) and had increased
exploratory behavior compared with healthy controls (mean [SD] decision steepness
parameter β: ADHD, 4.83 [2.97]; controls, 6.04 [2.53]; P = .02). The functional magnetic
resonance imaging analysis revealed impaired RPE processing in the medial prefrontal cortex
during cue as well as during outcome presentation (P < .05, family-wise error correction). The
outcome-related impairment in the medial prefrontal cortex could be attributed to deficient
processing at 200 to 400 milliseconds after feedback presentation as reflected by reduced
feedback-related negativity (ADHD, 0.61 [3.90] μV; controls, −1.68 [2.52] μV; P = .04).

CONCLUSIONS AND RELEVANCE The combination of computational modeling of behavior and
multimodal neuroimaging revealed that impaired decision making and learning mechanisms
in adolescents with ADHD are driven by impaired RPE processing in the medial prefrontal
cortex. This novel, combined approach furthers the understanding of the pathomechanisms
in ADHD and may advance treatment strategies.
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A ttention-deficit/hyperactivity disorder (ADHD) has been
associated with deficits in decision making and
learning.1 These skills are guided by the dopaminer-

gic system,2 which is impaired in ADHD.3-5 However, little is
known about the cortical mechanisms and processes that cause
these deficits.1 Several influential ADHD models6-8 suggest that
these decision-making and learning impairments are caused
by impaired processing of what are termed reward prediction
errors (RPEs).

Reward prediction errors have been discovered to reflect
neural signals that drive learning and decision making.2,9,10 Re-
ward prediction errors signal violations of expectations and can
be estimated by using computational reinforcement learning
models.11 It is now widely accepted that RPE signals are en-
coded by the phasic firing rate of dopaminergic neurons in the
mesencephalon.12 Reward prediction errors occur at 2 points
during a decision-making trial: at cue and at outcome presen-
tation. At cue presentation, RPEs (RPEcue) reflect the ex-
pected value of a selected stimulus. At outcome, the RPE
(RPEoutcome) is the difference between the reward received and
the expected value of the selected stimulus.13 These RPE sig-
nals are projected from the dopaminergic midbrain to several
prefrontal and striatal areas that are also crucially involved in
decision making, such as the ventral striatum and the medial
prefrontal cortex (mPFC).8,14,15Neuroimaging studies16-19 have
consistently identified these regions as being impaired in
ADHD. Additionally, studies on feedback-related negativity
(FRN),20-22 an electroencephalogram (EEG) component reflect-
ing RPE processing in the mPFC, have suggested that RPE
processing may be impaired as early as 200 to 400 millisec-
onds after outcome presentation in ADHD.23-26

Although several lines of evidence suggest RPE impair-
ments in ADHD, no study has investigated the neural sub-
strates of RPE processing by means of computational model-
ing of learning and decision making in juvenile ADHD.

Additionally, it remains unknown how these RPE impair-
ments may relate to deficient learning mechanisms. Compu-
tational simulations of ADHD behavior27 have suggested that
individuals with ADHD make more exploratory decisions or
may have a reduced learning rate, but this has not been exam-
ined in patients.

In this study, we applied the novel methods of computa-
tional psychiatry.28 Computational psychiatry uses biologi-
cally plausible models, such as the aforementioned RPE-
based reinforcement learning models,11 to understand the
mechanisms that underlie disturbed learning and decision
making and overcome the limitations of purely descriptive
measures, such as error rates. We examined the neural corre-
lates of RPE processing. To overcome the poor temporal reso-
lution of functional magnetic resonance imaging (fMRI) and
the weak spatial resolution of EEG,29 we used a simultaneous
EEG-fMRI approach that exploits the advantages of both
modalities without relying on spatial or other constraints of
separate analyses.30-32

Methods
Participants
The study was approved by the ethics committee of the Can-
ton of Zurich, Switzerland, and all participants and their par-
ents gave written informed consent. The participants each
received a voucher for local stores for their participation.

Forty adolescents aged 12 to 16 years participated in this
study (Table 1). Twenty individuals with ADHD were re-
cruited from our outpatient clinics. Twenty healthy adoles-
cents were recruited from local schools to serve as controls.
All participants underwent a semistructured clinical inter-
view (Schedule for Affective Disorders and Schizophrenia for
School-Age Children–Present and Lifetime Version, German

Table 1. Characteristics of the Participants

Characteristica Control Group ADHD Group Significance
Age, mean (SD), y 14.80 (1.46) 14.60 (1.67) t38 = .41; P = .69

Sex (male/female), No. 10/10 13/7 χ 2
1 = .92; P = .34

Handedness (left
/right), No.b

1/19 4/16 χ 2
1 = 2.06;
P = .15

IQ estimate, mean (SD)c 113 (11) 108 (16) t38 = 1.22;
P = .23

WISC score
(standardized), mean
(SD)

Block design 12.4 (2.4) 12.0 (3.6) t38 = 0.37;
P = .72

Similarities 11.9 (1.4) 11.3 (1.7) t38 = 1.31;
P = .20

Digit span 10.5 (2.4) 9.5 (3.0) t38 = 1.13;
P = .27

ADHD index, mean
(SD)d

49.5 (6.1) 67.4 (7.5)e t38 = −8.22; P <
.001

Medication NA Methylphenidate (n = 14), isotretinoin
(n = 1), melatonin (n = 1)

NA

Past or current
comorbiditiesf

Transient tic (n = 3),
affective disorders (n = 1),
phobias and other anxiety
disorders (n = 3), enuresis
(n = 1)

Transient tic (n = 4),
affective disorders (n = 6), phobias and
other anxiety disorders (n = 3), enuresis
(n = 1), learning and developmental
disorders (n = 4), conduct disorder (n = 3)

NA

Abbreviations: ADHD,
attention-deficit/hyperactivity
disorder; NA, not applicable; WISC,
Wechsler Intelligence Scale for
Children.
a Both groups were matched for age,

sex, handedness, and intelligence,
but differed significantly in the
ADHD index of the Conners 3
questionnaire.

b According to Oldfield.33

c IQ was estimated based on the
WISC subtests34; the IQ estimate
was calculated using model 56 by
Waldmann.35

d Derived from a research version of
the Conners-3 scale; T values
reported.36

e Missing data on 1 patient.
f As assessed by the Schedule for

Affective Disorders and
Schizophrenia for School-Age
Children–Present and Lifetime
Version.

Research Original Investigation Medial Prefrontal Cortex Role in ADHD

1166 JAMA Psychiatry October 2014 Volume 71, Number 10 jamapsychiatry.com

Copyright 2014 American Medical Association. All rights reserved.

Downloaded From: http://archpsyc.jamanetwork.com/ on 05/03/2015



Copyright 2014 American Medical Association. All rights reserved.

version).37,38 All participants with ADHD fulfilled the diagno-
sis of a combined inattention and hyperactivity-impulsivity
subtype (DSM-IV code 314.01), corresponding to the 314.01
combined presentation according to DSM-5. Exclusion crite-
ria were severe psychiatric disorders, such as schizophrenia,
major depression, obsessive-compulsive disorder, pervasive
developmental disorders, Tourette syndrome, substance abuse,
primary mood or anxiety disorder (assessed using the Sched-
ule for Affective Disorders and Schizophrenia for School-Age
Children–Present and Lifetime Version), and autism spec-
trum disorders (assessed using the Social Communication
Questionnaire39). At the time of our study, only 1 participant

with ADHD met the diagnostic criteria for comorbid conduct
disorder, and none had oppositional defiant disorder. The con-
trols were matched for age, sex, handedness, and IQ. Medi-
cated patients with ADHD had to suspend their medication for
at least 48 hours before testing. Because of excessive move-
ment during scanning (>1 voxel maximal scan-to-scan move-
ment), we had to exclude 1 participant with ADHD.

Procedures
Task
The participants played a probabilistic reversal learning task
(Figure 1A and eMethods in the Supplement).15,40 The partici-

Figure 1. Probabilistic Reversal Learning Task and Winning Computational Model
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A, The participants played a probabilistic reversal learning task while
simultaneous electroencephalogram and functional magnetic resonance imaging
were recorded. In each trial, the participants had to select 1 of 2 stimuli: one had a
reward probability of 0.8 and the other had a reward probability of 0.2. The
participants had to learn the reward probabilities and detect reversals on a
trial-and-error basis. B, The hierarchical Gaussian filter model performed best for

the healthy controls, but not for the participants with attention-deficit/
hyperactivity disorder (ADHD). Markovian states are denoted by x1 to x3, and !,
ω, and β describe the free parameters. C, Group difference of the decision
steepness parameter β indicates increased exploratory behavior in participants
with ADHD compared with the controls. BPA indicates Bayesian parameter
average.
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pants had to learn the stimulus with a higher outcome prob-
ability on a trial-and-error basis to gain as much money as pos-
sible. The reward probabilities changed occasionally, and the
participants had to adjust accordingly.

Computational Models
To infer learning, we compared 2 learning models and 2 deci-
sion models. As a standard learning model, we used an ad-
vanced Rescorla-Wagner model with an anticorrelated valua-
tion system.15 This model has been shown15,40 to be highly
successful at inferring learning in probabilistic reversal learn-
ing tasks. We compared this model with a flexible Bayesian
learning model, the hierarchical Gaussian filter model (HGF).41

In essence, the 2 learning models differ in their flexibility
of learning. The advanced Rescorla-Wagner model has a fixed
learning rate across the whole experiment, which means that
the values of the stimuli are constantly updated, irrespective
of any environmental or other change. The HGF, in contrast,
has a flexible learning rate that adapts to changes in the vola-
tility of the environment and according to beliefs about the
value of the objects. This assumes a more precise and fine-
grained learning process and has been shown42,43 to be supe-
rior to reinforcement learning models. These findings also im-
ply that healthy individuals learn in a more sophisticated
manner than is assumed by the more simplistic Rescorla-
Wagner learning model.

To ensure that all participants understood the task and per-
formed above chance level, we additionally compared the best-
fitting model for each person with a model that assumes per-
formance at chance level. One participant with ADHD had to
be excluded from further analysis because the chance model
outperformed the other models. A more detailed description
of the models and their update equations is provided in
eMethods in the Supplement.

To determine the model that fitted behavior optimally, we
performed Bayesian model selection for groups44 across all par-
ticipants and for each group independently. To further inves-
tigate learning and decision-making impairments, we com-
pared the parameter estimates of the model that performed
best across all subjects using Mann-Whitney tests.

Simultaneous EEG-fMRI
Simultaneous EEG-fMRI was recorded (Achieva 3.0T scan-
ner; Philips) using an MR-compatible EEG system (BrainAmp
MR Plus; BrainProducts). Preprocessing and analysis of the
fMRI were performed using SPM8 (http://www.fil.ion.ucl.ac
.uk/spm/). Data obtained with EEG were preprocessed and ana-
lyzed using BrainVision Analyzer, version 2.0.2, and EEGLAB
toolbox.45 To study the neural differences in RPE processing
between the groups as captured by fMRI, we entered the
model-derived RPE values for every trial into the first-level
analysis as 2 separate parametric modulators at the times of
cue and outcome presentations. The first regressor corre-
sponded to the RPEcue and was therefore entered during
cue presentation, whereas the second regressor modulated
RPEoutcome and was thus entered during outcome pre-
sentation. To study the group differences of RPEcue and
RPEoutcome, we used independent-sample t tests and a mul-

tiple comparison correction threshold of P < .05 cluster-
extent family-wise error corrected (voxel-height threshold,
P < .001). As ADHD diagnoses imply, individuals with ADHD
also display increased motor activity. Because the scan-to-
scan motion differed marginally between our groups (ADHD
mean [SD]: 0.10 mm [0.03]; range, 0.05-0.15 mm; and con-
trols: 0.08 mm [0.03]; range, 0.05-0.20 mm; t36, −2.0; P = .052),
and because we wanted to ensure that our findings were not
biased by movement artifacts, we also decided to analyze re-
duced groups excluding the 6 adolescents with the highest
mean scan-to-scan movements (5 ADHD and 1 control). The
reduced groups no longer differed significantly in motion
(P > .10), and we subsequently discuss only the findings that
were consistent across both analyses.

In the EEG, the FRN was analyzed as the difference be-
tween the most negative peak between 200 and 425 millisec-
onds after feedback and the preceding positive peak between
150 and 300 milliseconds (eFigure 1 in the Supplement).46 These
peaks were determined for each condition (reward and pun-
ishment) and participant separately. The FRN was then com-
puted as the difference between punishments and rewards.

To localize the FRN, we used an EEG-informed fMRI
approach30,32,40 and entered the single-trial amplitudes as para-
metric modulators during feedback presentation into the first-
level fMRI analysis. A detailed description of the preprocess-
ing and data analysis is provided in the eMethods in the
Supplement.

Results
Behavior
Mean reaction times, reaction time variability, and the num-
ber of misses did not differ between the groups (eTable 1 in the
Supplement). However, participants with ADHD earned mar-
ginally less than controls (ADHD, 10.30 [11.70] CHF; controls,
15.60 [5.65] CHF; t38 = 1.82; P = .08).

Behavioral Model Comparison
Using Bayesian model selection for groups,44 we found that
the HGF performed best across all subjects (Px = .70; Px is the
exceedance probability, ie, the probability that this particular
model performs better than any other model included in the
comparison) (eTable 2 in the Supplement and Figure 1B). The
HGF also performed best for the controls (Px = .98). For ADHD,
however, the anticorrelated Rescorla-Wagner model clearly out-
performed the HGF (Px = .92).

Model Parameter Comparison
The model parameter comparison of the best-performing
model across all participants (HGF) revealed that those with
ADHD showed a significantly less steep decision function (β:
ADHD, 4.83 [2.97]; controls, 6.04 [2.53]; U = 109; z = −2.276;
P = .02) (Figure 1C). We found no significant differences be-
tween the groups for the subject-specific volatility estimate (ω:
ADHD, −1.70 [1.60]; controls, −1.26 [0.40]; U = 187; z = −0.08;
P = .95) or the meta-volatility parameter (!: ADHD, 0.0025
[0.0001]; controls, 0.0025 [0.0001]; U = 166; z = −0.674; P = .51).
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Neural Group Differences in RPE Processing
During cue presentation (RPEcue), participants with ADHD were
found to process RPEs significantly differently in the mPFC
(Table 2 and Figure 2A), both in the analysis containing all sub-
jects and in the reduced groups.

During outcome presentation (RPEoutcome), RPE process-
ing consistently elicited differential activations in the mPFC,
both in the analysis containing all participants and in the re-
duced groups (Table 2 and Figure 2B). Additional group dif-
ferences in the complete sample (Table 2) did not remain sig-
nificant in the reduced groups.

Temporal Aspects of RPE Processing: FRN
The amplitudes for rewards and punishments were found to
be largest at electrode Fz (eResults in the Supplement). The FRN
at this electrode was significantly larger in the control group
than that for the participants with ADHD (controls, −1.68 [2.52]
μV; ADHD, 0.61 [3.90] μV; t36 = −2.17; P = .04) (Figure 3A). Fur-
ther analyses revealed that the controls showed a significant
FRN (t19 = −2.98; P = .008), whereas the participants with ADHD
did not (t17 = 0.66; P = .52).

Localization of the FRN
To determine the generator of the FRN, we entered the single-
trial amplitudes of the FRN as a parametric modulator in the
fMRI design matrix. For the healthy controls, we localized the
FRN to a cluster in the mPFC (Montreal Neurological Insti-
tute: x = −11, y = 56, z = 24; k = 582; z = 3.61) (Figure 3B). For
the adolescents with ADHD, we did not find any significant ac-
tivation. Strikingly, the source of the FRN in the controls over-
lapped with the region that also shows a significant differ-
ence between the groups in the RPEoutcome contrast.

Discussion

In this study, we provided insights into the dysfunctional de-
cision-making and learning mechanisms in adolescent ADHD
using advanced learning models in combination with simul-
taneously recorded EEG and fMRI data.

By using different computational models of learning, we
found that the behavior of healthy controls was better ex-
plained by the more-flexible Bayesian HGF model, whereas the
simpler Rescorla-Wagner model was better suited for the par-
ticipants with ADHD. The 2 models differ mainly in their flex-
ibility. The Rescorla-Wagner model has a fixed learning rate,
which entails that RPEs always have the same effect on learn-
ing, and the HGF has a more flexible learning rate that builds
on environmental volatility and the participants’ current be-
liefs about the value of the objects. This diverging model se-
lection result does not imply that the groups use strongly di-
verging learning mechanisms or diverging cognitive strategies.
Rather, it suggests that adolescents with ADHD do not profit
from the increased flexibility of the HGF and that they are not
sensitive to subtle changes in reward contingencies, such as
changes in environmental volatility or their current beliefs.

Comparison of the model parameters revealed that ado-
lescents with ADHD have a less steep decision parameter β. This
means that these participants differ in the exploration-
exploitation dimension.47,48 Participants with ADHD seem to
exploit the best option less frequently according to their in-
ferred beliefs, but to behave in a more exploratory way and ex-
amine the alternative option more often. This finding fits nicely
with previous computational simulations,27 which suggested
that this decision steepness can cause ADHD-like behavior. In

Table 2. Group Differences Between Patients With ADHD and Healthy Adolescents for RPEcue and RPEoutcome
a

Contrast Region Hemisphere Cluster Size (Voxels) x y z z Score
Controls > ADHD

RPEcue NS

RPEoutcome ACC Right 106 24 33 15 4.48

mPFC Bilateral 406 −8 54 18 4.35

Left 200 −8 48 42 4.16

MTG Right 1094 51 −39 2 4.29

STG Left 170 −65 −54 18 4.27

234 −56 −24 −5 4.26

123 −36 −6 −11 3.94

SMG Right 192 71 −30 30 4.24

Left 204 −57 −28 21 3.85

MFG Right 134 26 15 21 3.95

Precentral Right 142 57 −7 45 3.76

Lingual Right 151 20 −55 −9 3.75

ADHD > Controls

RPEcue mPFC Right 128 8 66 15 4.72

RPEoutcome NS

Abbreviations: ACC, anterior cingulate cortex; ADHD, attention-deficit/
hyperactivity disorder; MFG, middle frontal gyrus; mPFC, medial prefrontal
cortex; MTG, middle temporal gyrus; NS, no significance; RPE, reward
prediction error; SMG, supramarginal gyrus; STG, superior temporal gyrus.

a Boldface type regions indicate that the difference remained significant in the
comparison of the reduced groups. Significance threshold was set to P < .05
cluster-extent family-wise error correction. Coordinates are reported in
Montreal Neurological Institute space.
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decision making during uncertainty, exploratory behavior is
crucial to success because it facilitates the detection of changes
in reward contingencies.47,48 However, the fact that the healthy
controls earned marginally more implies that the exploratory
behavior of the participants with ADHD was too high for op-
timal task performance and that they were not able to ad-
equately adjust their exploratory behavior.

Our analysis further revealed that ADHD cannot be char-
acterized by an altered learning rate per se, because the higher-
order volatility parameters (!, ω) do not differ. This is in line
with a previous study that did not find any learning rate im-
pairments in ADHD.49 Our finding also indicates that the dif-
ferences in the model selection are not primarily caused by the
volatility estimate, but rather by the current belief about the
value. This finding also confirms that the participants with
ADHD learned the reward contingencies properly and that the
increased exploratory behavior found in the present study does
not simply reflect randomness in behavior.

To understand the neural mechanisms that are respon-
sible for the changes in the decision-making and learning pro-
cesses, we examined RPE processing during cue and outcome
presentations between the groups. Critically, we found activa-
tion differences during both phases in adjoining regions in the
mPFC. This finding fits neatly with our behavioral finding of an

altered decision steepness in ADHD, because we found the mPFC
to be part of a network that is correlated with the decision-
steepness parameter β in our participants (eResults, eTable 3,
and eFigure 2C-D in the Supplement). Moreover, the mPFC is
well known for processing prediction errors50,51 and guiding
value comparison and response selection,52-54 and has been sug-
gested to be a locus of malfunctioning decision making in
ADHD.8 Although the findings in previous studies55,56 on re-
versal learning tasks in ADHD were not consistent regarding
mPFC impairment, overall, this region has frequently been as-
sociated with neural alterations in ADHD during rest57 and cog-
nitive tasks.16 Our findings indicate that deficient RPE process-
ing in the mPFC may cause the suboptimal choice selection that
is reflected by their more exploratory behavior.

The regions in the mPFC that we found to be impaired in
ADHD are adjacent to the core regions known to process RPEs
(Figure 2A and B). This suggests that individuals with ADHD may
not process RPEs differently in the RPE core regions. Rather, it
seems as if RPEs are processed in a less-extended area. This is
also in line with our behavioral findings that learning in ADHD
is not completely impaired; rather, there are more subtle dif-
ferences, as reflected by the lowered decision steepness.

To better understand the temporal characteristics of RPE
processing, we analyzed the FRN using an EEG-fMRI integra-

Figure 2. Main Effects and Group Differences in Reward Prediction Error (RPE) Processing During Cue and Outcome Presentation
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x = 7
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Groups showed a different response during cue (A) and outcome (B) in the medial prefrontal cortex. ADHD indicates attention-deficit/hyperactivity disorder.
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tion approach. We found that participants with ADHD did not
have a significant FRN in contrast to the healthy controls, who
showed a clear FRN. We successfully localized the FRN to the
mPFC in healthy controls. Remarkably, the source of the FRN
overlapped with the RPEoutcome impairment in the partici-
pants with ADHD. This may explain why we did not find a sig-
nificant FRN and were not able to localize the component in the
ADHD group. It also suggests that the impairment in the mPFC
in ADHD reflects an early cognitive deficiency that occurs less
than 400 milliseconds after feedback. Research23-25 so far has
investigated the FRN in ADHD with mixed results. Our study
not only adds additional evidence for FRN attenuation but also
clarifies its role and the neural origin.

Given that previous studies16,17,19 on ADHD have often fo-
cused on the ventral striatum, a region also known to process
RPEs,58-60 we performed a supplemental analysis of a cluster
in the subgenual anterior cingulate cortex and ventral stria-
tum, which was found to be active in our RPE analysis (eRe-
sults in the Supplement). We found no RPE-related differ-
ence between the groups during cue presentation, but
significantly deficient RPE processing occurred in the ADHD
group during the outcome (eFigure 3 in the Supplement). A con-
nectivity analysis revealed that the connectivity between this
region of interest and the mPFCoutcome cluster is significantly
lowered in ADHD. This finding indicates that both regions be-
long to a single frontostriatal loop, which has impaired con-
nectivity in ADHD.

Attention-deficit/hyperactivity disorder has been dis-
cussed in the context of developmental delays.61-66 Although
our study cannot answer whether our findings reflect a devel-
opmental delay or an age-independent impairment, it is in-
teresting that studies on healthy RPE development have found
that the ventral striatum displays characteristic developmen-
tal trajectories19,67,68 and that exploratory behavior de-
creases with age.67

A limitation of the present study is that most of our ADHD
sample received methylphenidate. We interrupted the medi-
cation for the experiment and therefore ensured that our find-
ings were not biased by acute medication effects. However, we
cannot exclude the possibility that our findings were influ-
enced by some long-term effects of the medication. We also
decided to investigate individuals who had received medica-
tion because we think that untreated ADHD may represent a
possibly less severely affected ADHD subgroup rather than a
representative sample of the ADHD population.

Conclusions
Taken together, the results of the behavioral modeling, fMRI,
and EEG data suggest that adolescents with ADHD have spe-
cific learning and decision-making deficits. Individuals with
ADHD cannot be characterized by an impaired learning rate per
se, in contrast to what has been suggested by theoretical
models.6,27 Rather, they show a less fine-grained decision pro-
cess and explore more frequently. These impairments are most
likely caused by impaired RPE processing in the mPFC, a well-
known integrative hub in decision making and learning.

By using a computational psychiatric approach28 in com-
bination with multimodal imaging, this study provides novel
insights into impaired decision-making mechanisms and RPE
deficits in adolescents with ADHD. Our findings further the un-
derstanding of potential pathomechanisms underlying im-
paired decision making and learning. Given that therapeutic
interventions focus strongly on reinforcement modification,
our findings could also inform interventional strategies for
cognitive behavioral therapy (eg, working toward less-
exploratory behavior). Moreover, our neural findings rein-
force interventions in ADHD that focus on the mPFC, such as
tomographic neurofeedback,63 but may also encourage the use
of extended neurofeedback methods, such as FRN-based train-
ing or real-time fMRI neurofeedback in the mPFC.

Figure 3. Temporal Aspects of Decision Making: the Feedback-Related
Negativity (FRN)
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functional magnetic resonance imaging analysis. This cluster overlapped with
the group difference in reward prediction error outcome (RPEoutcome),
indicating that both measures depict the same impaired process (depicted at
P < .005).
a P = .04.
b P = .008.
c P = .52.
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eMethods. Supplementary Methods 

Probabilistic reversal learning task 
The task was similar to the task described in Hauser et al.(2014)1. On each trial, the subjects had to select the one of 
two stimuli. One of the two stimuli had a reward probability of 0.8 while the other stimulus had a reward probability 
of only 0.2. The subjects had to learn the reward probabilities on a trial-and-error basis. After six to 10 correct 
(minimally three consecutive correct responses) responses, the reward probabilities reversed, to which the subjects 
then had to adapt. The participants knew about the possibility of reversal, but they were not informed about any 
details of the reversals. Rewards were depicted by a framed 50 Swiss Centimes coin. As punishment, the participants 
lost 50 Swiss Centimes. The task consisted of two runs with 60 trials each. Participants were instructed to win as 
much money as possible. They knew that half of the money won was paid to them at the end of the study. On each 
trial, two objects were presented for 1500ms. One of the stimuli (the “correct” stimulus) had a reward probability of 
0.8 and a punishment probability of 0.2. The other, “incorrect” stimulus had a punishment probability of 0.8 and a 
win probability of 0.2. Late answers (>1500ms) were punished with one Swiss Franc. This was done to prevent late 
answers and these trials did not enter the learning analysis. The average total trial duration was 9000ms. In each run, 
we additionally presented 20 null trials of 9000ms length. 
 
 
Computational models 
To infer behavior, we tested two learning models and two decision models. We performed model comparison using 
Bayesian random effects analysis2. The best performing model combination over all participants was used for group 
comparison and further analyses. 
To ensure that participants did not respond randomly, performing at chance level, we additionally built a simple 
model without any free parameter which always resulted in a choice probability of 0.5 at every trial. This chance 
model was compared to the best performing of the other models. If the chance model performed equally well or 
better, we excluded this subject from analysis, given that no learning was detectable. 
 
Learning models 
We compared two different models which are explained in what follows. Note that, for clarity, we use δ for the RPE 
during outcome and choice value )(t

chosenV for RPE during cue presentation (because RPEcue is the difference between 
the expected value of the cue and not presenting a cue, which equals zero). For a more detailed explanation of this 
notational choice, see e.g., Niv et al. (2012)3. In the results and discussion sections, we use RPEcue for the expected 
value ( chosenV ) and RPEoutcome for δ. 
 
Anticorrelated Rescorla-Wagner model 

δ at each trial t was computed as the difference between the anticipated ( )(t
chosenV ) and the received ( )(tR ) outcome: 

 )()()( t
chosen

tt VR � G  (1) 

The values of both options were then updated using δ4: 
 )()()1( tt

chosen
t

chosen VV DG� � (2) 

 )()()1( tt
unchosen

t
unchosen VV DG� �

, 
(3) 

where α depicts the learning rate. The priors for the model fitting procedure were set to (0) .5V  , )10(5. D  
(mean(variance in logit space)). 
 
Hierarchical Gaussian Filter model (HGF) 
The HGF is a generic hierarchical, approximately Bayes-optimal learning model. The HGF fully complies with the 
assumptions of predictive coding and the Bayesian brain hypothesis, which states that the brain always learns in a 
Bayes-optimal fashion, given individually different priors5,6. The exact formulation, the model inversion and the 
complete update equations are described in Mathys et al. (2011)7–9. The HGF, as used here, consists of a hierarchy of 
3 hidden states, where the states at levels 2 and 3 ( 2x , 3x , resp.) evolve as Gaussian random walks over time (Figure 

1B). 1x  ( }1,0{� ) indicates the environmental state that defines which stimulus is being rewarded. It is governed by 

the state 2x  ( }{�ff� ), which is transformed to the probability that 1x  by a logistic sigmoid transformation 
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with ))1/(1(:)( xexs �� . State 2x  evolves over time and is determined by a Gaussian random walk. The value of 
)(

2

tx  is normally distributed with mean )1(
2

�tx  and variance ZN �)(
3
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)(

2
ZN �� txtt exNxp  

(5) 

Since the variance of this random walk can be taken as a measure of the volatility of 2x , the log-volatility  ( )
3
txN Z�  

has two components, one phasic and the other tonic: 3x  is a state-dependent (phasic) log-volatility, while Z  is a free 

parameter defining a subject-specific (tonic) log-volatility. N  was fixed to 1 as in Vossel et al. (2013)8. The state )(
3

tx  

is normally distributed with mean )1(
3

�tx  and variance - . -  is a free parameter and can be regarded as a subject-
specific meta-volatility. 
 ),(~)( )1(

3
)(

3 -�tt xNxp  (6) 

 
The variational inversion of the model yields subject-specific Gaussian belief trajectories about 2x  and 3x , 
represented by their means 2P , 3P  and variances (or, equivalently, precisions) 2V , 3V  ( 2S , 3S ). This inversion 
revealed that the trial-by-trial update equations highly resemble the update equations from Rescorla-Wagner models 
(cf. equation 1):  
 )ˆ( )(

2
)()(

1

ttt sR PG � 
, 

(7) 

where )1(
2

)(
2ˆ � tt PP  is the trial-by-trial mean of the Gaussian prior at the second level and )(

1
)( : tt xR  . )(

2ˆ tP  is updated 
by a precision-weighted RPE 
 )(

1
)(

2
)(

2
)(

2
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, 
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where )(
2

tV  is the trial-by-trial variance at level 2. It can be expressed by a ratio of precision estimates Ŝ  
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ss PP
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For the update equations at level 3 and for the derivation of the equations, please refer to Mathys et al. (2011)7. 
Parameters were estimated in spaces where they were unbounded (e.g., the initial values 0V  of the variances were 
estimated in logarithmic space, where their possible values are unbounded, while in native space there is a lower 
bound at zero). This enabled the use of Gaussian priors, which (in the appropriate spaces) were set to μ0=[0,1](0,0), 
σ0=[0,0](1,1), κ=1(0), ω=-2(10), -=.03(1). 
 
To sum up, the HGF has a similar update structure as the anticorrelated Rescorla-Wagner model (cf. equations 1 and 
2 with 7 and 8). But instead of a fixed learning rate across the whole experiment (i.e., α), the learning rate is 
determined by an estimate of the variance of the belief (eq. 9). Therefore, the impact of the RPEs (δ1) is modulated 
by the environmental volatility and the certainty of beliefs, resulting in a bigger impact of RPEs in more uncertain 
trials. 
 
For a better understanding of this model in the context of RPE-theories, we define )(

2ˆ tP  of the chosen object as the 
choice value ( )(t

chosenV ) and δ1 as RPE. We decided not to investigate higher-order updates and beliefs because we had 
no specific hypotheses about these levels of the model.  
 
Decision models 
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We combined each of the learning models with two of the most commonly used decision models. As first model, we 
chose a softmax function,  
 

)(1
1)(

BA VVe
Ap ���

 E , 
(12) 

where )(Ap  denotes the probability of choosing object A and E  is a free parameter. As a second decision model, we 
implemented a unit square sigmoid transformation 
 

[[

[

BA

A

VV
VAp
�

 )( , 
(13) 

where [  denotes the free parameter.  
The main difference between these two models is how they translate beliefs into action probabilities. The softmax 
model is more flexible, especially in decisions with beliefs of high certainty, where the unit square model is (almost) 
deterministic. So far, the softmax model has mainly been used to model reversal learning tasks1,4,10. Nevertheless, 
with this comparison, we wanted to ensure that this decision model is also well suited for our data. 
  
 
Model fitting procedure 
All models were implemented and estimated using the HGF toolbox framework (v2.1; 
http://www.translationalneuromodeling.org/tapas/). We used the (negative) variational free-energy F to compare the 
model fits. F is a lower bound on the log-model-evidence, and the maximization of F therefore minimizes the 
Kullback-Leibler divergence between the exact and the approximate posterior distribution11. For optimization, we 
used the Broyden, Fletcher, Goldfarb and Shanno (BFGS) quasi-Newton optimization algorithm. We compared each 
combination of a learning model with a decision model using Bayesian model selection (BMS)2. Because the two 
groups could have had a different winning model, we ran BMS for all subjects together as well as for each group 
independently. 
 
Data acquisition 
We recorded fMRI in a 3 T Philips Achieva Scanner (Philips Medical Systems, Best, the Netherlands), which was 
equipped with a receive-only 32-element head coil array. We used an echo planar imaging (EPI) sequence which was 
optimized for maximal orbitofrontal signal sensitivity (TR: 1850ms, TE: 20ms, 15° tilted downwards of AC-PC, 40 
slices, 2.5*2.5*2.5mm voxels, 0.7mm gap, FA: 85° FOV: 240*240*127mm). For normalization purposes we also 
acquired a T1-weighted structural image. For our simultaneous EEG acquisition, we used two MR-compatible 32-
channel DC amplifiers (BrainProducts GmbH, Gilching, Germany). We recorded the data with a sampling rate of 5 
kHz (recording reference: Fz, EEG recording filters: DC-250 Hz, ECG: DC-1000 Hz) from 63 scalp electrodes and 2 
ECG channels. The 63 scalp electrodes covered the international 10-20-system12 plus the following positions: FPz, 
AFz, AF2, FCz, CPz, POz, Oz, Iz, F5/6, FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6, 
PO1/2/9/10, OI1/2, left and right eye (laterally and below the eyes). For a more even coverage, O1’/2’ and FP1’/2’ 
were located 15% more laterally to Oz/FPz. 
 
fMRI analysis  
For fMRI preprocessing and analysis, we used SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The raw data were 
realigned, resliced, and coregistered to the T1 image. For normalization, the deformation fields were used, which 
were obtained using new segmentation. This procedure resulted in a new standard voxel size of 1.5*1.5*1.5mm. 
Subsequently, the data were spatially smoothed (6mm FWHM kernel). 
For our fMRI analysis, we estimated the RPEs and choice values using the winning model across all participants. In 
the first-level GLM, we entered the model-derived RPEs (RPEoutcome, here δ1) at feedback onset and choice values 
(RPEcue, here 2P̂ ) at cue presentation as parametric modulators. Additionally, we entered the following regressors of 
no interest to improve model validity. To control for movement-induced effects, we entered the realignment-derived 
movement parameters. Furthermore, we entered an additional regressor for each scan with a scan-to-scan motion > 
1mm (determined using a custom adaptation of the artRepair-toolbox, http://cibsr.stanford.edu/tools/human-brain-
project/artrepair-software.html). Because the heart rate is known to differ between ADHD and controls in 
reinforcement paradigms13 and because pulsations induce micro-movements and therefore add noise to the data, we 
additionally regressed out pulsatile effects using an adaptation of RETROICOR 
(http://www.translationalneuromodeling.org/tapas/)14,15. Missing answers were also entered into a regressor-of-no-
interest. For all task-related regressors, the spatial and temporal derivatives were enabled. Results of the random-
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effects fMRI analyses are reported using a p<.05 voxel-height FWE threshold for task main effects, and p<.05 
cluster-extent FWE correction (voxel-height threshold p<.001) for between group comparisons. 
 
RPE main effects and group differences 
To analyze the neural correlates of RPE processing during cue presentation and outcome (task main effects), we 
entered all subjects into one random effects analysis. To obtain the group differences, we compared both groups 
using independent t-tests (separately for RPEcue and RPEoutcome).  
 
Neural correlates of β 
We evaluated where in the brain the decision steepness (model parameter β) is processed. To do so, we ran a 
covariate analysis during cue presentation with β as covariate in all subjects. To eliminate between-group effects, we 
added the group as an additional covariate-of-no-interest. 
 
ROI-Analysis of sgACC/VS-cluster 
ADHD – in particular with respect to decision making – has often been associated with activation differences in the 
ventral striatum16. We therefore decided to investigate the activity in this area, which is well known for processing 
RPEs17–19. In our RPE main effects analysis (RPEcue and RPEoutcome combined), we found a significant cluster 
containing the subgenual ACC and ventral striatum (sgACC/VS) to be activated by RPEs (cf. eFigure 2, 3E, eTable 
3). We defined the ROI (8mm sphere) based on the peak voxel in the sgACC/VS cluster of our task main effects 
analysis (eFigure 2A, eTable 3). The effects of RPEs were computed using rfxplot20. We performed a split-half 
analysis of the RPE trials (hereafter: positive and negative RPEs) and used repeated measures ANOVAs and post hoc 
t-tests to compare the RPEs. The same analysis was also conducted based on a peak voxel from an independent 
group of healthy adults (n=25, 29.9y±7.4, 16m/9f) which played the same task. Their data were analyzed in the same 
way as described above. We also found a strongly significant main effects RPE activation in the sgACC/VS area 
(MNI: x=-5, y=17, z=-14; t(24)=6.53) and used this peak as the center of the ROI. 
 
Functional connectivity analysis 
To better understand how the impairments in the mPFC can be related to the sgACC/VS-impairment, we performed 
an exploratory connectivity analysis. We entered the SPM-derived first-level GLMs into the CONN-fMRI functional 
connectivity toolbox (v13p, http://www.nitrc.org/projects/conn/). Additionally, we entered the segmented structural 
images (gray matter, white matter, cerebro-spinal fluid) into the analysis for additional motion correction. The data 
were filtered using .008-.09Hz bandpass filter and we performed a ROI-to-ROI functional connectivity analysis 
(bivariate regression) using the mPFC clusters which were found to be impaired in the main RPE analysis. 
Additionally, the sgACC/VS-ROI was entered. 
 
EEG preprocessing, analysis, and source localization 
We used BrainVision Analyzer 2.0.2 (BrainProducts GmbH, Gilching, Germany) for EEG preprocessing. MR 
artifact correction was conducted using sliding average subtraction21. Cardioballistic artifacts were removed using 
the implemented CBC correction algorithms. The data was resampled (256 Hz) and filtered (.1 Hz-30 Hz, 50 Hz 
notch). Ocular and remaining cardioballistic artifacts were excluded using independent component analysis (ICA). 
The continuous data was re-referenced to average reference22 and then exported for further analysis to Matlab using 
the eeglab-toolbox23.  
We used a peak-to-peak analysis to define the FRN. We segmented (-100-700ms relative to feedback onset) and 
baseline-corrected (-100-0ms) the continuous data in reward and punishment trials separately. Epochs with 
amplitudes greater than ±80μV were excluded from subsequent analyses (number of trials excluded: ADHD: 21±26, 
controls: 15±17, t(36)=.81, p=.426). We restricted our analysis to the electrodes Cz, FCz, and Fz, which are most 
often used in FRN analyses. For each subject, we determined the most negative peak between 200-425ms 
(punishment: ADHD: 316ms±43, controls: 323ms±46, t(36)=.43, p=.670; reward: ADHD 339ms±34, controls: 
331ms±38, t(36)=-.71, p=.485) and the most positive preceding peak between 150-300ms (punishment: ADHD: 
203ms±34, controls: 206ms±34, t(36)=.28, p=.780; reward: ADHD: 213ms±30, controls: 208ms±32, t(36)=-.55, 
p=.589), similar to the study by Zottoli and Grose-Fifer (2012)24. To determine the electrode with the maximal 
feedback-related response, we selected the electrode with the biggest difference between the two peaks. For both 
groups, electrode Fz elicited the biggest feedback-related response (Cz: controlsreward: -5.15μV±2.47, 
controlspunishment: -4.82μV±2.51, ADHDreward: -5.63μV±3.23, ADHDpunishment: -5.15μV±2.65; FCz: controlsreward: -
6.46μV±2.68, controlspunishment: -6.66μV±3.27, ADHDreward: -7.53μV±3.67, ADHDpunishment: -6.54μV±3.60; Fz: 
controlsreward: -8.06μV±3.04, controlspunishment: -9.74μV±3.90, ADHDreward: -8.81μV±4.08, ADHDpunishment: -
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8.21μV±4.55, eFigure 2). We calculated the FRN by subtracting rewards from punishments and compared the FRN 
between the groups using independent t-tests. 

To localize the FRN, we took the single-trial amplitudes and used them as a parametric modulator at the time of 
feedback in the first-level fMRI-GLM. We additionally entered all the regressors mentioned above (with exception 
of RPEoutcome) to improve model fit. We set the significance level to p<.001 cluster-extent FWE correction (voxel-
height threshold p<.005) and localized the FRN in both groups independently. 
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eResults. Supplementary Results 

Neural correlates of RPE processing: main effects 
When analyzing the main effect of RPEs (cue and outcome combined), we found a network which showed 
increasing activation with increasing RPEs containing the ventromedial prefrontal cortex (vmPFC), posterior 
cingulate cortex (PCC), amygdala, lateral prefrontal cortex (latPFC), and a cluster containing the subgenual anterior 
cingulate cortex and the ventral striatum (sgACC/VS; eFigure 2A, eTable 3). A network containing the anterior 
insula, mPFC, latPFC, dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL), precuneus, caudate, 
midbrain, and thalamus showed increasing activation with decreasing RPEs (eFigure 2B, eTable 3). For the RPE 
effects separated for cue and outcome, please refer to Figure 2. 
 
Neural correlates of the decision steepness 
Because we found differences in our model parameter β which indicates the steepness of the decision function (i.e. 
how exploratorily a subject behaves), we wanted to determine its neural correlates. Our covariate analysis revealed a 
network which contains mPFC, latPFC, dlPFC, STG and precentral area (eFigure 2C-D, eTable 3). These regions are 
well known regions of the decision making network: especially the mPFC has been associated with value 
comparison and response selection25–27. 
 
Analysis of sgACC/VS-ROI  
The analysis of our sgACC/VS-ROI revealed a significant RPE (negative, positive) * time (cue, outcome) * group 
(ADHD, controls) interaction (F(1,36)=6.16, p=.018). Post hoc t-tests revealed that there was no difference for 
RPEcue (negative RPE: t(36)=.17, p=.865; positive RPE t(36)=-.15, p=.883, eFigure 3A). For RPEoutcome, there was a 
significant difference for negative (t(36)=-2.83, p=.007, eFigure 3B) and positive RPEs (t(36)=2.84, p=.007). Also 
for the analysis which was based on an independent adult sample (s. above), we found a significant RPE (negative, 
positive) * time (cue, outcome) * group (ADHD, controls) interaction (F(1,36)=5.17, p=.029). Post hoc t-tests 
revealed that there was no difference for RPEcue (negative RPE: t(36)=.070, p=.945; positive RPE t(36)=-.065, 
p=.949, eFigure 3C). For RPEoutcome, there was a significant difference for negative (t(36)=-2.55, p=.015, eFigure 3D) 
and positive RPEs (t(36)=2.54, p=.015). Thus, both groups showed similar RPE activation patterns during cue 
presentation, but controls show stronger RPE activation than subjects with ADHD in the sgACC/VS during outcome. 
 
Functional connectivity analysis 
To understand whether the differences between the mPFC were related to the sgACC/VS-cluster, we performed a 
ROI-to-ROI connectivity analysis. We found a significant connectivity in both groups between mPFCoutcome and the 
sgACC/VS (controls: .326±.147, t(19)=9.91, p<.001; ADHD: .192±.137, t(17)=5.95, p<.001; eFigure 3E) and 
between the  mPFCoutcome and mPFCcue (controls: .395±.399, t(19)=4.43, p<.001; ADHD: .311±.377, t(17)=3.50, 
p=.003). No significant connectivity was found between mPFCcue and sgACC/VS (controls: .134±.467, t(19)=1.28, 
p=.214; ADHD: .126±.357, t(17)=1.49, p=.154). A comparison between the groups revealed a significantly reduced 
connectivity in ADHD between the mPFCoutcome and the sgACC/VS (t(36)=2.89, p=.006), but not in the other two 
comparisons (mPFCoutcome-mPFCcue: t(36)=.67, p=.510; mPFCcue-sgACC/VS: t(36)=.06, p=.950). 

References 
1.  Hauser TU, Iannaccone R, Stämpfli P, et al. The Feedback-Related Negativity (FRN) revisited: New insights 

into the localization, meaning and network organization. NeuroImage. 2014;84:159-168. 
2.  Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. 

NeuroImage. 2009;46(4):1004-1017. doi:10.1016/j.neuroimage.2009.03.025. 
3.  Niv Y, Edlund JA, Dayan P, O’Doherty JP. Neural prediction errors reveal a risk-sensitive reinforcement-

learning process in the human brain. J Neurosci Off J Soc Neurosci. 2012;32(2):551-562. 
doi:10.1523/JNEUROSCI.5498-10.2012. 

4.  Gläscher J, Hampton AN, O’Doherty JP. Determining a role for ventromedial prefrontal cortex in encoding 
action-based value signals during reward-related decision making. Cereb Cortex. 2009;19(2):483-495. 
doi:10.1093/cercor/bhn098. 

5.  Dayan P, Hinton GE, Neal RM, Zemel RS. The Helmholtz machine. Neural Comput. 1995;7(5):889-904. 
6.  Friston KJ. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127-138. 

doi:10.1038/nrn2787. 
7.  Mathys C, Daunizeau J, Friston KJ, Stephan KE. A bayesian foundation for individual learning under 

uncertainty. Front Hum Neurosci. 2011;5:39. doi:10.3389/fnhum.2011.00039. 

Downloaded From: http://archpsyc.jamanetwork.com/ on 05/03/2015



© 2014 American Medical Association. All rights reserved.   8 
 

8.  Vossel S, Mathys C, Daunizeau J, et al. Spatial Attention, Precision, and Bayesian Inference: A Study of 
Saccadic Response Speed. Cereb Cortex N Y N 1991. 2013. doi:10.1093/cercor/bhs418. 

9.  Joffily M, Coricelli G. Emotional Valence and the Free-Energy Principle. PLoS Comput Biol. 
2013;9(6):e1003094. doi:10.1371/journal.pcbi.1003094. 

10.  Hampton AN, Bossaerts P, O’Doherty JP. The role of the ventromedial prefrontal cortex in abstract state-
based inference during decision making in humans. J Neurosci. 2006;26(32):8360-8367. 
doi:10.1523/JNEUROSCI.1010-06.2006. 

11.  Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace 
approximation. NeuroImage. 2007;34(1):220-234. doi:10.1016/j.neuroimage.2006.08.035. 

12.  Jasper HH. The ten-twenty electrode system of the international federation. Electroencephalogr Clin 
Neurophysiol. 1958;10:370-375. 

13.  Luman M, Oosterlaan J, Hyde C, van Meel CS, Sergeant JA. Heart rate and reinforcement sensitivity in 
ADHD. J Child Psychol Psychiatry. 2007;48(9):890-898. doi:10.1111/j.1469-7610.2007.01769.x. 

14.  Kasper L, Marti S, Vannesjö SJ, et al. Cardiac Artefact Correction for Human Brainstem fMRI at 7 Tesla. In: 
Proc Org Hum Brain Mapp.; 2009. 

15.  Glover GH, Li T-Q, Ress D. Image-based method for retrospective correction of physiological motion effects 
in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–167. doi:10.1002/1522-
2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E. 

16.  Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to 
trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav 
Rev. 2014;38:125-134. doi:10.1016/j.neubiorev.2013.07.012. 

17.  Gläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: Dissociable neural prediction error signals 
underlying model-based and model-free reinforcement learning. Neuron. 2010;66(4):585-595. 
doi:10.1016/j.neuron.2010.04.016. 

18.  Rutledge RB, Dean M, Caplin A, Glimcher PW. Testing the reward prediction error hypothesis with an 
axiomatic model. J Neurosci Off J Soc Neurosci. 2010;30(40):13525-13536. doi:10.1523/JNEUROSCI.1747-
10.2010. 

19.  Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin 
reward-seeking behaviour in humans. Nature. 2006;442(7106):1042-1045. doi:10.1038/nature05051. 

20.  Gläscher J. Visualization of group inference data in functional neuroimaging. Neuroinformatics. 2009;7(1):73-
82. doi:10.1007/s12021-008-9042-x. 

21.  Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during 
functional MRI. NeuroImage. 2000;12(2):230-9. doi:10.1006/nimg.2000.0599. 

22.  Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel 
potential fields. Electroencephalogr Clin Neurophysiol. 1980;48(6):609-621. 

23.  Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including 
independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi:10.1016/j.jneumeth.2003.10.009. 

24.  Zottoli TM, Grose-Fifer J. The feedback-related negativity (FRN) in adolescents. Psychophysiology. 
2012;49(3):413-420. doi:10.1111/j.1469-8986.2011.01312.x. 

25.  Hare TA, Schultz W, Camerer CF, O’Doherty JP, Rangel A. Transformation of stimulus value signals into 
motor commands during simple choice. Proc Natl Acad Sci U S A. 2011;108(44):18120-18125. 
doi:10.1073/pnas.1109322108. 

26.  Holroyd CB, Coles MGH. The neural basis of human error processing: reinforcement learning, dopamine, and 
the error-related negativity. Psychol Rev. 2002;109(4):679-709. 

27.  Kennerley SW, Behrens TEJ, Wallis JD. Double dissociation of value computations in orbitofrontal and 
anterior cingulate neurons. Nat Neurosci. 2011;14(12):1581-1589. doi:10.1038/nn.2961. 

  

Downloaded From: http://archpsyc.jamanetwork.com/ on 05/03/2015



© 2014 American Medical Association. All rights reserved.   9 
 

eFigure 1. Analysis of the FRN.  
The FRN was computed as the difference of the amplitude difference between N2 and P2 peak between punishments and rewards. 
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eFigure 2. Neural correlates of RPEs and decision function.  
A, Increasing RPEs are associated with increased activation in a network containing the vmPFC and the sgACC/VS (p<.05 voxel-
height FWE). B, Decreasing RPEs are associated with a network containing the anterior insula, mPFC and the dlPFC. The model 
parameter β, which indicates the steepness of the decision function, elicits a network containing the mPFC (C) and the latPFC (D) 
during the decision phase (p<.05 cluster-extent FWE). 
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eFigure 3. Analysis of sgACC/VS-ROI and functional connectivity.  
The analysis of a cluster in the subgenual ACC and ventral striatum (sgACC/VS) displayed no activation differences between the 
groups during cue-phase (A). However, during outcome phase (B), subjects with ADHD (red) showed no activation, while the healthy 
controls (black) showed normal modulation. The same held true when the ROI was based on the activation from an independent 
group of adults to analyze the RPE effects during cue (C) and outcome (D). (E) A functional connectivity analysis revealed a 
significant functional connectivity between the sgACC/VS-cluster and the mPFC (cluster derived from RPEoutcome contrast between 
groups) in both groups. However, the functional connectivity was significantly decreased in ADHD compared to controls. * p < .05;   
** p < .01; *** p < .001. 
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eTable 1. Behavioral differences between groups.  
Analysis of reaction times and number of misses revealed no difference between the groups. This ensures that group differences 
found in modeling and earnings are not caused by reaction time differences between the groups (mean±std). 

 controls ADHD  

reaction time: mean 687ms±75 741ms±75 t(38)=1.43, p=.160 

reaction time: standard deviation 178ms±37 197ms±44 t(38)=1.54, p=.132 

misses 2.05±2.21 3.85±7.34 t(38)=1.05, p=.300 
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eTable 2. Results of the Bayesian model comparison.  
The combination of the HGF learning model and the softmax decision model outperformed the other models for the whole group and 
for the healthy controls. For the ADHD patients, the anticorrelated Rescorla-Wagner model performed best. Please note that pp and 
px sum up to 1 over the model space. Bold indicates the winning model. pp: expected posterior probability; px: exceedance 
probability; RW: Rescorla-Wagner, sm: softmax decision model, usq: unit square decision model. 

models 
all subjects ADHD controls 

pp px pp px pp px 

anticorrelated RW - sm .44 .30 .59 .92 .26 .02 

anticorrelated RW - usq .03 .00 .05 .00 .04 .00 

HGF - sm .51 .70 .32 .08 .66 .98 

HGF - usq .03 .00 .05 .00 .05 .00 
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eTable 3. Results of additional fMRI analyses: main task effect of RPE (cue + 
outcome) and decision steepness (model parameter β).  
The RPEs elicit the typical activation found for RPE processing (regions reported at p < .05 voxel-height FWE, k > 10). Subjects with 
higher β show increased activations in these areas (regions reported at p < .05 cluster-extent FWE). Cluster size is given in number 
of voxels. Coordinates are reported in MNI space. 

Contrast Region Hemisphere Cluster size x y z 
z 

Score 
        

RPEcue+outcome vmPFC bilateral 435 -8 44 -12 6.38 

 PCC bilateral 373 -5 -55 19 6.37 

 hippocampus/amygdala right 21 15 -6 -20 5.85 

   19 26 -16 -17 5.58 

  left 18 -29 -19 -17 5.70 

   12 -30 -34 -18 5.65 

   12 -24 -24 -20 5.52 

 latPFC left 15 -51 32 7 5.74 

 sgACC/VS bilateral 20 0 14 -9 5.67 

        

-RPEcue+outcome anterior insula left 1035 -32 21 -8 >8 

  right 1624 39 17 -6 >8 

 mPFC bilateral 3993 -6 27 39 >8 

 latPFC right 3451 26 53 -2 7.53 

  left 773 -32 51 16 6.65 

 IPL right 1335 48 -45 40 7.14 

   227 -39 -45 37 6.51 

 precuneus bilateral 420 8 -64 49 6.76 

 caudate left 118 -11 9 1 6.36 

  right 238 15 18 1 6.33 

 midbrain  202 -3 -24 -5 6.35 

 thalamus left 16 -11 -15 12 6.02 

 dlPFC left 39 -44 30 37 5.72 

        

β latPFC right 197 63 15 9 4.75 

  left 251 -48 35 12 4.44 

 mPFC bilateral 301 -8 48 37 4.56 

 precentral right 153 11 -25 73 4.48 
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   177 39 -15 33 4.13 

 STG right 125 59 -24 7 4.32 

 dlPFC left 92 -23 23 49 3.68 
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